高压线路的配电线路防雷措施有哪些呢?

  随着国民经济的发展与电力需求的不断增长,电力生产的安全问题也越来越突出。对于送电线路来讲,雷击跳闸一直是影响高压送电线路供电可靠性的重要因素。由于大气雷电活动的随机性和复杂性,目前世界上对输电线路雷害的认识研究还有诸多未知的成分。进行高压送电线路设计时要全面考虑,综合分析每一条线路的具体情况,通过安全、经济、质量比较,选取有针对性的防雷设计技术措施,以达到提高供电可靠性的目的。

  线路防雷保护首先在于抓好基础工作,目前国内外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,只要运用得好,仍然是可以信赖的。对已投运的线路,应结合地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平给出正确的评价,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。

  高压送电线路遭受雷击的事故主要与四个因素有关:线路绝缘子的50%放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。高压送电线路各种防雷措施都有其针对性,因此,在进行高压送电线路设计时,我们选择防雷方式首先要明确高压送电线路遭雷击跳闸原因。

  2.1 高压送电线路绕击成因分析

  根据高压送电线路的运行经验、现场实测和模拟试验均证明,雷电绕击率与避雷线对边导线的保护角、杆塔高度以及高压送电线路经过的地形、地貌和地质条件有关。对山区的杆塔,我们的计算公式是:

  山区高压送电线路的绕击率约为平地高压送电线路的3倍。山区设计送电线路时不可避免会出现大跨越、大高差档距,这是线路耐雷水平的薄弱环节;一些地区雷电活动相对强烈,使某一区段的线路较其它线路更容易遭受雷击。

  2.2 高压送电线路反击成因分析

  雷击杆、塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。如果升高塔体电位和相导线感应过电压合成的电位差超过高压送电线路绝缘闪络电压值,即Uj > U50%时,导线与杆塔之间就会发生闪络,这种闪络就是反击闪络。 序号 对照项目 反击 绕击 1 雷电流测量 电流较大(结合电流路径) 电流较小(结合电流路径) 2 接地电阻 大 小 3 闪络基数及相数 一基多相或多基多相 单基单相或相临两基同相 4 塔身高度 较高 较低 5 地形特点 一般,不易绕击 山坡及山顶易绕击处 6 闪络相别 耐雷水平低相(如下相) 易绕击的相(如上相)

  由以上公式可以看出,降低杆塔接地电阻Rch、提高耦合系数k、减小分流系数β、加强高压送电线路绝缘都可以提高高压送电线路的耐雷水平。在实际设计中,我们着重考虑降低杆塔接地电阻Rch和提高耦合系数k的方法作为提高线路耐雷水平的主要手段。

    3 高压送电线路设计防雷措施

  清楚了送电线路雷击跳闸的发生原因,对照下面表1内容,我们就可以有针对性的对设计中送电线路经过的不同地段,不同地理位置的杆塔采取相应的防雷措施。

加强高压送电线路的绝缘水平。高压送电线路的绝缘水平与耐雷水平成正比,加强零值绝缘子的检测,保证高压送电线路有足够的绝缘强度是提高线路耐雷水平的重要因素。我们在设计高压线路时充分比较各种绝缘子的性能,分析其特性,认为玻璃绝缘子有较好的耐电弧和不易老化的优点,并且绝缘子本身具有自洁性能良好和零值自爆的特点。特别是玻璃是熔融体,质地均匀,烧伤后的新表面仍是光滑的玻璃体,仍具有足够的绝缘性能,所以设计中我们多考虑采用玻璃绝缘子。

  ⑵ 降低杆塔的接地电阻。高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压送电线路耐雷水平的基础,是最经济、有效的手段。对于土壤电阻率较高的疑难地区的线路,则应跳出原有设计参数的框框,特别是要强化降阻手段的应用,如增加埋设深度,延长接地极的使用,就近增加垂直接地极的运用

  ⑶ 根据规程规定:在雷电活动强烈的地区和经常发生雷击故障的杆塔和地段,可以增设耦合地线。由于耦合地线可以使避雷线和导线之间的耦合系数增大,并使流经杆塔的雷电流向两侧分流,从而提高高压送电线路的耐雷水平。

适当运用高压送电线路避雷器。由于安装避雷器使得杆塔和导线电位差超过避雷器的动作电压时,避雷器就加入分流,保证绝缘子不发生闪络。根据实际运行经验,在雷击跳闸较频繁的高压送电线路上选择性安装避雷器可达到很好的避雷效果。目前在全国范围已使用一定数量的高压送电线路避雷器,运行反映较好,但由于装设避雷器投资较大,设计中我们只能根据特殊情况少量使用。

  作为设计部门,我们在进行送电线路设计时还应注意以下几点:

  (1) 在选择高压送电线路路径时,应尽量避开雷电多发区或对防雷不利的地方;对于易受雷击的杆塔接地,要尽量降低接地电阻。

  (2) 在选择避雷方式时也要充分考虑本地区的防雷经验及特点,选用合适的避雷方法;

  (3) 对于雷击多发区也应当减少大档距段的设计和在规程允许的范围内降低塔高。

  (4) 加强高压送电线路的验收。对于新投产的高压送电线路,做好高压送电线路的验收工作,抽查接地体的埋深是否符合规程的要求,射线长度是否达到设计的长度,接地体与接地引下线是否有可靠的电气连接,这些都是保证杆塔可靠防雷基础。 

  (5) 对已投运的线路,生产单位要加大对老旧线路的投资和改造力度,对运行中发现问题较多的线路、雷击频发区段,要集中人力、资金,尽快进行改造。

  在总结了送电线路防雷工作存在的问题和如何运用好常规防雷技术措施的基础上,我们认为雷电活动是小概率事件,随机性强,要做好送电线路的防雷工作,就必须抓住其关键点。综上所述,为防止和减少雷害故障,设计中我们要全面考虑高压送电线路经过地区雷电活动强弱程度、地形地貌特点和土壤电阻率的高低等情况,还要结合原有高压送电线路运行经验以及系统运行方式等,通过比较选取合理的防雷设计,提高高压送电线路的耐雷水平。雷电活动是一个复杂的自然现象,需要电力系统内各个部门的通力合作,才能尽量减少雷害的发生,将雷害带来的损失降低到最低限度。

《高压输电线路的防雷技术》由会员分享,可在线阅读,更多相关《高压输电线路的防雷技术(5页珍藏版)》请在人人文库网上搜索。

1、 高压输电线路的防雷技术 摘要:输电线路是电力系统的大动脉,在保障民生和经济社会发展等方面发挥着重要作用。为了避免供电系统被破坏,输电线路应当安装相应的防护设施。在雷雨天气时,高压雷电流会破坏电力设备与输电线路稳定运行,所以提高输电线路的耐雷水平十分必要。本文主要分析高压输电线路防雷浅析关键词:高压输电线路;雷击跳闸;驱雷;雷电引言:输电线路作为电网事业中的一个重要组成部分,其运行好坏直接影响着电网发展的稳定性。在输电线路运行中,不可避免的会遭遇一些自然雷击事故,引发一些故障和事故发生,另外在输电线路运维过程中,也会碰到或大或小的问题,这些问题在一定程度上阻碍着输电线路稳定运行,因此本文就输电

2、线路的防雷设计与输电线路运维技术进行讨论分析,提出一些可行性的建议,以供参考。1雷电对电力输电线路的危害雷电具有不确定性,强烈,破坏力大,能在瞬间产生巨大的磁场效应。因此,雷击输电线路时,雷击会导致绝缘体失效,引起电压过高而引发跳闸,从而造成电力事故,危害人民生命财产安全。雷击即带电云层对大地放电时对中间建筑物及电气电子设备造成损害的过程,而高压架空输电线路作为近地空中建筑,其遭受雷击的强度和频率之高不言自明。雷击对于世界范围内的高压输电线路的影响和危害都是十分严重的,轻则导致输电线路的绝缘子发生闪络而引起输电线单相接地或者跳闸,造成对用户供电的短暂中断;重则由于雷击电流在输电线路中形成雷电进

3、行波在线路中传播,导致避雷器爆炸或者破坏主变压器的绝缘保护设施,进而对用户供电造成长时间的中断。此外,在特定情况下的雷击会在输电线路中产生一定强度的电流,但其产生的电压值小于绝缘子串的绝缘值,只降低绝缘子的绝缘值而不会直接造成绝缘子闪络,但是会削弱输电线路后续的抗雷击能力。雷电对高压输电线路的危害主要由雷电冲击波电流产生的过电压导致,输电线或杆塔及避雷线受雷击产生的过电压,主要分为直接雷击过电压和感应雷击过电压,前者主要是由高压输电线路受雷击造成的,后者主要是由避雷线及杆塔受雷击造成的感应电流造成的。其中,雷电直接或者绕开避雷线而击中输电线即为直击或绕击,此时雷电流会在输电线中直接产生高压电流

4、而导致绝缘子串发生闪络;雷电击中避雷线或者杆塔等设施称为反击,由于所产生的高压电流不能及时疏导而在输电线路形成高压差,进而造成绝缘子闪络的发生。2输电线路防雷原理的探究2.1合理选择路径雷电对线路的主要影响因素包括线路附近区域的地理位置、地貌、天气情况、雷暴日等,这些因素会对电线的工作环境造成影响。因此,在进行防雷设计之前,需要先调查清楚当前地区的实际情况,然后对收集到的气象资料进行分析,尽量避开山谷、密林、河流、山峰等雷电多发区域,降低雷击现象的发生频率。2.2防雷措施我国市面上使用的防雷措施主要为几种,分别为架设避雷线、降低杆塔接地电阻、安装避雷设备、加强线路绝缘以及装设耦合地线,这些措施

5、可以提高线路的绝缘等级或者增强雷电流泄流效果,提升线路的避雷效果。当设计人员确定了线路路径之后,其需要使用防雷措施降低电磁场、强电流、热效应的危害,利用接地线将电流引导进地面中,避免输电线路损坏。防雷设施的设计与雷击强度、电流峰值以及整定电流相关,也受到电阻、避雷线等设备参数的影响。2.3安装继电保护装置继电保护装置可以对线路进行有效保护,能够将雷击的影响范围进行合理控制,从而达到减小停电范围的效果。自动重合闸的合理选用,有助于线路在遭受雷击跳闸后迅速恢复。由于线路绝缘具有恢复功能,多数雷击引起的冲击闪络和工频电弧在线路跳闸后迅速去电离,使线路绝缘不会永久损坏老化,自动重合闸效果良好。2.4疏

6、导式防雷保护我国避雷设施的核心策略为努力提升线路的雷电抵抗能力,降低雷电跳闸带来的威胁。电网企业将雷电跳闸率作为衡量防雷措施效果的重要标准,防雷保护较多的采用堵塞型防雷方式,这种方法主要应用在电源较少,电网薄弱的环境中,但是在一些电源较多的线路中使用效果却并不理想。所以,基于线路运行维护经验,技术人员根据间隙防雷的特点再次提出了疏导型的防雷保护措施,允许线路存在一定的跳闸情况,将间隙设备与绝缘子进行连接,引导工频电流,保护绝缘子的完整性,减少雷击事件的危害。在实际应用中,应根据线路情况合理选择堵塞型与疏导型保护措施,提升防雷保护能力。3高压输电线路防雷措施3.1防雷击防护措施输电线路架设一般主

kV及以上电压等级的线路。架设的避雷线对输电线的防雷作用很大程度取决于保护角的设定范围,在500kV及以上的超高压线路中保护角一般应小于15,特定地区如高山区域等则需要保护角为负值,而在330kV以下电压等级线路中保护角则应设定在2030之间。此外,对于500kV以上线路架设避雷线时应充分考虑防止雷电绕击的发生,可通过屏蔽角计算来确定最佳避雷线保护角。避雷针作为接引雷电的装置,一般与避雷线联合使用,以形成对输电线路有威胁的雷电的接引、疏导、释放,进而保护线路免遭雷击危害。对于220kV线路,避雷针是必备的防雷设施,通常在输电线路的杆塔挂靠点处侧向安装2个避雷针,其与杆塔约成45夹

8、角。对于避雷针接引雷电瞬间形成的雷电屏蔽效应,采用一般的防雷措施可起的作用较小,但与消雷器联合使用可以很好地解决这一问题。3.2减少避雷线保护角防雷减少避雷线保护角是一种堵塞型防雷技术,保护角就是避雷线和外侧导线间的垂直夹角,在一定程度上减少保护角能够提高绝缘等级和耐雷水平,对雷电进行封堵作用,可以有效避免线路断线的发生。保护角应该在线路架设完成之前就要做好预算,因为在线路运行时不能改变保护角,一般在高压输配电线路杆塔高于40m时尽量将保护角设计在5以下,深山遭受雷电的几率更大,因此深山的线路保护角应该比平原的保护角更小。具体操作时,采用三角接线方式布置三相导线,可以提高避雷线的顶点高度,有效

9、地减小了避雷线保护角,减小了避雷线保护角,可以大大降低输配电线路的雷击事故,提高输配电线路的安全性。3.3改变线路绝缘性绝缘子的使用是目前较为普遍的防雷措施之一,在高压输电线路上安装绝缘子,能有效地减少雷击损失。采用绝缘子防雷,一般原则是支撑导线,防止电流回流。因此,在电网建设中,应加强对绝缘子的检测和管理,严格控制其质量指标。对于已经安装好的绝缘子,应按照输电线路的相关规程,定期进行绝缘子检测,对发现的低值、零值绝缘子,及时更换不合格产品。一般情况下,高压输电线路杆塔越高,遭受雷击的可能性就越大,因此在大面积使用高杆塔的区域非常容易遭到雷击。不平衡绝缘方式具有较强的经济性,且操作更加方便,可有效提高线路绝缘等级,增加回打和绕打的耐雷性。中高杆塔采用大爬距悬式绝缘子,适当增加绝缘子片数,增加杆塔顶部的空间距离,增加避雷线与跨越档距大的导线之间的距离,可以改变线路的绝缘性,提高其抗雷击能力。结语总之,在高压输电线路的运行过程中,雷击问题不可避免,极易影响线路的安全和供电稳定。因此,防雷工作必须

我要回帖

更多关于 配电线路防雷措施有哪些呢 的文章

 

随机推荐