怎么用电机1的转速控制电机2的转速,且两电机转速差实时可调?还要响应快速。

《伺服电机的PLC控制》由会员分享,可在线阅读,更多相关《伺服电机的PLC控制(15页珍藏版)》请在人人文库网上搜索。

1、伺服电机的PLC控制方法以我司KSDG系列伺服驱动器为例,介绍PLC控制伺服电机的方法。伺服电机有三种控制模式:速度控制,位置控制,转矩控制 由伺服电机驱动器的Pr02 参数与32(C-MODE)端子状态选择,本文简要介绍位置模式的控制方法一、按照伺服电机驱动器说明书上的"位置控制模式控制信号接线图"连接导线

2、阻),SIGN2连接控制器(如PLC的输岀端子)。当此端子接收信 号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。7(com+)与外接24V直流电源的正极相连。29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连, 则伺服电机进入使能状态, 通俗地讲就是伺服电机已经准备好, 接收脉冲 即可以运转。上面所述的六根线连接完毕 (电源、编码器、 电机线当然不能忘 ),伺服电机即可根 据控制器发岀的脉冲与方向信号运转。其他的信号端子,如伺服报警、 偏差计数清零、 定位完成等可根据您的要求接入控制器构成更完善的控制系统。二、设置伺服电机驱

3、动器的参数。1、 Pr02 控制模式选择,设定 Pr02 参数为 0 或是 3或是 4。 3 与 4的区别在于当 32(C-MODE) 端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如 果您只要求位置控制的话, Pr02 设定为 0 或是 3 或是 4是一样的。2、Pr10, Pr11,Pr12 增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。 当然其他的参数也需要调整 (Pr13 ,Pr14,Pr15,Pr16,Pr20 也是很重要的参数 ),在您不太熟悉前只调整这三个参数也可以满足基本的要求.3、 Pr40 指令脉冲输入选择

5、,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。其公式为:伺服电机每转一圈所需的脉冲数=编码器分辨率x Pr4B/(Pr46 X 2APr4A)伺服电机所配编码器如果为:2500p/r5 线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm您要做到控制器发送一个脉冲伺服电机行走长度为一个丝 (0.01mm) o 计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=10

6、0,Pr4B=20。从上面的叙述可知 :设定Pr46,Pr4代Pr4B 这三个参数是根据 我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定 后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。PLC触摸屏直接控制伺服电机程序设计摘要:以三菱公司的FX3U-48MT-ES-A作为控制元件,GT1155-QFBD-C作为操作元件直接控制三菱伺服电机的具体程序设计。关键词: PLC; 触摸屏 ; 伺服电机伺服电机又称执行电机, 它是控制电机的一种。它是一种用电脉冲信号进行控制的,并将脉冲信号转变成相应的角

7、位移或直线位移和角速度的执行元件。根据控制对象的不同,由伺服 电机组成的伺服系统一般有三种基本控制方式,即位置控制、速度控制、力矩控制。本系统我 们采用位置控制。PLC 在自动化控制领域中,应用十分广泛。尤其是近几年PLC在处理速度,指令及容量、单轴控制方面得到飞速的发展,使得PLC在控制伺服电机方面也变得简单易行。1 控制系统中元件的选型1.1PLC 的选型因为伺服电机的位移量与输入脉冲个数成正比,伺服电机的转速与脉冲频率成正比, 所以我们需要对电机的脉冲个数和脉冲频率进行精确控制。且由于伺服电机具有无累计误差、跟踪 性能好的优点,伺服电机的控制主要采用开环数字控制系统,通常在使用时要搭配伺

8、服驱动器 进行控制,而伺服电机驱动器采用了大规模集成电路,具有高抗干扰性及快速的响应性。在使 用伺服驱动器时,往往需要较高频率的脉冲,所以就要求所使用的PLC能产生高频率脉冲。三菱公司的FX3U晶体管输岀的 PLC可以进行6点同时100 kHz高速计数及3轴独立100 kHz的定 位功能,并且可以通过基本指令0.065卩s、PCMIX值实现了以4.5倍的高速度,完全满足了我们控制伺服电机的要求,所以我们选用FX3U-48MT-ES-A型PLC。1.2 伺服电机的选型在选择伺服电机和驱动器时, 只需要知道电机驱动负载的转距要求及安装方式即可,我们选择额定转距为 2.4 N m额定转速为 3 00

9、0 r/min ,每转为131 072 p/rev 分辨率的三菱公 司HF-KE73W1-S100伺服电机,与之配套使用的驱动器我们选用MR-E-70A-KH003伺服驱动器。三菱的此款伺服系统具有500 Hz的高响应性,高精度定位,高水平的自动调节,能轻易实现增益设置,且采用自适应振动抑止控制,有位置、速度和转距三种控制功能,完全满足要求。同时我们采用三菱 GT1155-QFBD-C型触摸屏,对伺服电机进行自动操作控制。2 PLC 控制系统设计我们需要伺服电机实现正点、反点、原点回归和自动调节等动作,另外为确保本系统的 精确性我们增加编码器对伺服电机进行闭环控制。PLC控制系统I/O接线图如

11、SL3:*>*; l*T'0H>:图2梯形图M806控制伺服急停,M801控制伺服电机原点回归,M802控制伺服正点,M803控制伺服反点,M804为自动调节,M805为压力校正即编码器的补偿输入。在电机运行前需要首先进行原点回归,以确保系统的准确性和稳定性,当M50和M53同时接通时,伺服电机以2 kHz的速度从丫0输岀脉冲,开始做原点回归动作,当碰到近点信号M30= ON时,变成寸动速度 1 kHz,从Y0输岀脉冲直到 M30=OFF后停止。M30是在自动调节时,电机转动的角度与零点相等时为ON电机在进行正反点时,我们采用FX3U具有的专用表格定位指令DTBL S1 S

1、系统电压太低、或起动电机是电压低导致转速慢、温度高。

2、电机线包内部短路,会直接引发电机发热,转速变慢。

3、电机转子断条、电机过热。

4、电机负荷过重,有些时候,电机负荷太重也是吃不消的。

5、检查3相电压是否平衡、误差。

6、电机轴承间隙是否过大、是否缺油,缺油会导致不够润滑,转速变慢。

  伺服电动机又叫执行电动机,或叫控制电动机。在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号变为的一定转速或角位移。其容量一般在 0.1-100W, 常用的是 30W 以下。伺服电动机有直流和交流之分。

  伺服电机的制动方式及其原理

  (1) 动态制动器(又称能耗制动)由动态制动组成,在故障、急停、断电时通过能耗制动缩短伺服电机的机械进给距离。

  (2) 再生制动(又称回馈制动)是指伺服电机在减速或停车时将制动产生的能量通过逆变回路反馈到直流母线,经阻容回路吸收。

  电磁制动是通过机械装置锁住电机的轴。 用户往往对电磁制动、再生制动、动态制动的作用混淆,选择了错误的配件。

  动态制动器由动态制动电阻组成,在故障、急停、电源断电时通过能耗制动缩短伺服电机的机械进给距离。

  动态制动器由动态制动电阻组成,在故障,急停,电源断电时通过能耗制动缩短伺服电机的机械进给

  一般都是在伺服电机的U V W相上引出三根线上面分别串上一个制动电阻,这三个电阻接到一个继电器上 ,在伺服电机正常工作时这个继电器是吸合的三个相线不短接 当伺服电机要制动时 继电器就断电释放三个相线接到一起了就开始制动了。

  再生制动是指伺服电机在减速或停车时将制动产生的能量通过逆变回路反馈到直流母线。经阻容回路吸收。

  电磁制动是通过机械装置锁住电机的轴。

  (1)再生制动必须在伺服器正常工作时才起作用,在故障、急停、电源断电时等情况下无法制动电机。动态制动器和电磁制动工作时不需电源。

  (2)再生制动的工作是系统自动进行,而动态制动器和电磁制动的工作需外部继电器控制。

  (3)电磁制动一般在SV OFF后启动,否则可能造成放大器过载。动态制动器一般在SV OFF或主回路断电后启动,否则可能造成动态制动电阻过热。

  选择配件的注意事项:

  (1) 有些系统如传送装置,升降装置等要求伺服电机能尽快停车。而在故障、急停、电源断电时伺服器没有再生制动无法对电机减速。同时系统的机械惯量又较大,这时需选用动态制动器动态制动器的选择要依据负载的轻重,电机的工作速度等。

  (2) 有些系统要维持机械装置的静止位置需电机提供较大的输出转矩且停止的时间较长,如果使用伺服的自锁功能往往会造成电机过热或放大器过载。这种情况就要选择带电磁制动的电机。

  (3) 三菱的伺服器都有内置的再生制动单元,但当再生制动较频繁时可能引起直流母线电压过高,这时需另配再生制动电阻。再生制动电阻是否需要另配,配多大的再生制动电阻可参照样本的使用说明。需要注意的是样本列表上的制动次数是电机在空载时的数据。实际选型中要先根据系统的负载惯量和样本上的电机惯量,算出惯量比。再以样本列表上的制动次数除以(惯量比+1)。这样得到的数据才是允许的制动次数。

  伺服电机的控制方法

  伺服电机是一种补助马达加速的设备,伺服机电控制速度、位置非常准确。伺服机电就是闭环控制器控制的电机,比普通电机多个编码器反馈,能够根据给定和反馈来计算输出目标值,控制电机的运动速度及位移的机械。通常伺服机电的控制方法有:

  伺服电机一般为三个环控制,所谓三环就是3个闭环负反馈PID调节系统。最内的PID环就是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。

  第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。

  第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢。

  1.转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

  2、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加整个系统的定位精度。

  3、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

  运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。

  1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。

  2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。

  3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。位置环的反馈也来自于编码器。

  编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。

  谈谈PID各自对差值调节对系统的影响:

  1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。。。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。

  2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常数的比例倒数我们在伺服系统里通常叫它为积分时间常数,积分时间常数越小意味着系统的变化速度越快,所以同样如果增大积分速度(也就是减小积分时间常数)将会降低控制系统的稳定程度,直到最后出现发散的震荡过程,这个环节最大的好处就是被调量最后是没有残差的。

  3、PI(比例积分)就是综合P和I的优点,利用P调节快速抵消干扰的影响,同时利用I调节消除残差。

  4、单独的D(微分)就是根据差值的方向和大小进行调节的,调节器的输出与差值对于时间的导数成正比,微分环节只能起到辅助的调节作用,它可以与其他调节结合成PD和PID调节。。。它的好处是可以根据被调节量(差值)的变化速度来进行调节,而不要等到出现了很大的偏差后才开始动作,其实就是赋予了调节器以某种程度上的预见性,可以增加系统对微小变化的响应特性。

  伺服的电流环的PID常数一般都是在驱动器内部设定好的,操作使用者不需要更改。

  速度环主要进行PI(比例和积分),比例就是增益,所以我们要对速度增益和速度积分时间常数进行合适的调节才能达到理想效果。

  位置环主要进行P(比例)调节。。。对此我们只要设定位置环的比例增益就好了。

  位置环、速度环的参数调节没有什么固定的数值,要根据外部负载的机械传动连接方式、负载的运动方式、负载惯量、对速度、加速度要求以及电机本身的转子惯量和输出惯量等等很多条件来决定,调节的简单方法是在根据外部负载的情况进行大体经验的范围内将增益参数从小往大调,积分时间常数从大往小调,以不出现震动超调的稳态值为最佳值进行设定。

  当进行位置模式需要调节位置环时,最好先调节速度环(此时位置环的比例增益设定在经验值的最小值),调节速度环稳定后,在调节位置环增益,适量逐步增加,位置环的响应最好比速度环慢一点,不然也容易出现速度震荡。

  一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式 。

  1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

  2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

  3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加整个系统的定位精度。

  4、谈谈3环,伺服电机一般为三个环控制,所谓三环就是3个闭环负反馈PID调节系统。最内的PID环就是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。

  第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。

  第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢。

以上电工吧小编收集整理的 部分内容来自网络,如有侵权请联系删除

我要回帖

更多关于 变频器如何控制电机的转速 的文章

 

随机推荐