气相色谱气相色谱有哪几种定量分析方法法有哪些?

原标题:色谱分析法基础知识

色譜法的创始人是俄国的植物学家茨维特( M.Tswett)1906年,俄国植物学家茨维特发表了他的实验结果:为了分离植物色素他将含有植物色素的石油醚提取液倒入装有碳酸钙粉末的玻璃管中,并用石油醚自上而下淋洗由于不同的色素在碳酸钙颗粒表面的吸附力不同,随着淋洗的进荇不同色素向下移动的速度不同,从而形成一圈圈不同颜色的色带使各色素成分得到了分离。他将这种分离方法命名为色谱法(chromatography)

色谱法是非常重要又常用的分析方法,今天咱们补充基础知识哦

√ 固定相—CaCO3颗粒

随着分离手段的不断发展,越来越多的无色物质成为被分离嘚对象色谱也渐渐失去了“色”的含义,但这个名称却沿用至今

色谱分析法(Chromatography)简称色谱法或层析法,是一种物理或物理化学分离分析方法该法利用某一特定的色谱系统(薄层色谱、高效液相色谱或气相色谱等系统)进行混合物中各组分的分离分析,主要用于分析多組分样品

? 固定相:在色谱分离中固定不动,对样品产生保留的一相

? 流动相:带动样品向前移动的另一相。

? 流动相:气相色谱、液相色谱、超临界流体色谱

? 固定相:气-固、气-液;液-固、液-液

? 柱色谱:填充柱色谱、毛细管柱色谱、微填充柱色谱、制备色譜

? 平面色谱:纸色谱、薄层色谱、高分子膜色谱

? 吸附色谱:根据不同组分在吸附剂上的吸附和解吸能力的大小而分离

? 分配色谱:根據不同组分在固定液中溶解度的大小而分离

? 分子排阻色谱:依据分子体积大小不同进行分离ln离子交换色谱:不同组分对离子交换树脂的親和力不同而分离

? 亲和色谱:利用生物大分子之间的存在的专一的特殊亲和力进行分离

? 毛细管电泳:依据各组分淌度和(或)分配行為的差异进行分离

? 手性色谱:用于手性药物的分离分析可分为三类:手性衍生化试剂法;手性流动相添加剂法;手性固定相拆分法

检測色谱分离后组分的响应信号对时间作图得到的曲线称为色谱图。

? 基线:在一定色谱条件下仅有流动相通过检测器系统时所产生的信號的曲线,称为基线如图中ot线。实验条件稳定时基线是一条平行于横轴的线;基线反映仪器(主要是检测器)的噪声随时间的变化。

? 峰高:色谱峰顶点与基线之间的垂直距离以h表示,如图AB’线

?区域宽度:色谱峰的区域宽度直接与分离效率有关。描述色谱峰宽的方法有三种:标准偏差σ、峰宽W、半峰宽W1/2

?标准偏差(σ):σ为正态分布曲线上两拐点间距离之半,σ值的大小表示组分离开色谱柱的汾散程度。 σ值越大,流出的组分越分散,分离效果变差;反之,流出组分集中,分离效果好。

? 峰宽W:通过色谱峰两侧的拐点作切线茬基线上的截距称为峰宽,或称基线宽度也可用W表示,如图IJ 的距离根据正态分布的原理 ,可证得峰宽和标准差的关系是W=4σ。

W1/2、W都是由σ派生而来的,除用它们衡量柱效外,还用于计算峰面积。半峰宽测量较方便,最为常用

色谱保留值、相对保留值与保留指数

是用来描述樣品组分在色谱柱中保留程度的参数,并作为色谱定性的指标其表示方法有:

又称分离因子、分配系数比或相对容量因子,即在一定色譜条件下被测组分的调整保留时间(体积)与标准物的调整保留时间(体积)之比。

采用相对保留值是为了消除某些操作条件如流速囷固定液流失等,对保留值的影响相对保留值中标准物可以是被测样品中的某一组分,也可以是人为加入的某一化合物

I为待测物质i在某固定液X上的保留指数,选取两个正构烷烃作为基准物质其中一个的碳数为N,另一个为N+n它们的调整保留时间分别为t’R(N)和 t’R(N+n),使待测物質i的调整保留时间t’R(i)恰好于两者之间即t’R(N)<t’R(i)<t’R(N+n)。将含物质i和所选的两个正构烷烃的混合物注入其固定液X的色谱柱在一定温度条件下绘淛色谱图。

当相邻两个正构烷的碳数差值n=1时保留指数或简化为:

在平衡状态下,组分在固定相(s)与流动相(m)中的质量之比称为容量因子。公式如下:

在平衡状态下组分在固定相(s)与流动相(m)中的浓度之比,称为分配系数公式如下:

? 保留值与容量因子及分配系数的关系

色谱汾离是基于固定相对试样中各组分的吸附或溶解能力强弱的不同,而这种吸附或溶解能力的强弱可定量地用分配系数K(或容量因子k)值的夶小来表示吸附或溶解能力强的组分分配系数(或容量因子)大,保留时间长;反之吸附或溶解能力弱的组分分配系数小,保留时间短

主要包括塔板理论和速率理论。

1 提出——热力学理论

? 始于马丁(Martin)和辛格(Synge)提出的塔板模型

? 分馏塔:在塔板上多次气液平衡,按沸点不同而分离

? 色谱柱:组分在两相间的多次分配平衡,按分配系数不同而分离

(1)色谱柱内存在许多塔板,组分在塔板间隔(即塔板高度)内可以很快达到分配平衡

(2)流动相进入色谱柱,不是连续的而是脉动式的即每次通过为一个塔板体积。

(3)样品加茬每个塔板上样品沿色谱柱轴方向的扩散可以忽略。

(4)在所有塔板上分配系数相等与组分的量无关。即分配系数在各塔坂上是常数

? 开始时,若有单位质量即m=1(例1mg或1μg)的某组分加到第0号塔板上,分配平衡后由于k=1,即ns=nm故nm=ns=0.5

? 当一个板体积(lΔV)的载气以脉动形式进入0号板时,就将气相中含有nm部分组分的载气顶到1号板上此时0号板液相中ns部分组分及1号板气相中的nm部分组分,将各自在两相间重新分配故0号板上所含组分总量为0.5,其中气液两相各为0.25而1号板上所含总量同样为0.5.气液相亦各为0.25

? 以后每当一个新的板体积载气以脉动式进叺色谱柱时,上述过程就重复一次(见下表)

理解:在tR一定时,W或W1/2越小(即峰越窄)理论板数n越大, 理论板高越小柱的分离效率越高。有效悝论塔板neff也同此理因此,理论塔板数是评价柱效能的指标

1956年荷兰学者VanDeemter等人吸收了塔板理论的概念,并把影响塔板高度的动力学因素结匼起来提出了色谱过程的动力学理论——速率理论,导出了Van Deemter方程它把色谱过程看作一个动态非平衡过程,研究过程中的动力学因素对峰展宽(即柱效)的影响

后来Giddings和Snyder等人在VanDeemter方程(后称气相色谱速率方程)的基础上,根据液体与气体的性质差异提出了液相色谱速率方程(即Giddings方程)。

色谱定性分析就是要确定各色谱峰所代表的化合物由于各种物质在一定的色谱条件下均有确定的保留值,因此保留值可莋为一种定性指标目前各种色谱定性方法都是基于保留值的。

但是不同物质在同一色谱条件下可能具有相似或相同的保留值,即保留徝并非专属的因此仅根据保留值对一个完全未知的样品定性是困难的。如果在了解样品的来源、性质、分析目的的基础上对样品组成莋初步的判断,再结合下列的方法则可确定色谱峰所代表的化合物

1 利用纯物质对照定性

在一定的色谱条件下,一个未知物只有一个确定嘚保留时间因此将已知纯物质在相同的色谱条件下的保留时间与未知物的保留时间进行比较,就可以定性鉴定未知物若二者相同,则未知物可能是已知的纯物质;不同则未知物就不是该纯物质。

纯物质对照法定性只适用于组分性质已有所了解组成比较简单,且有纯粅质的未知物

在某一固定相及柱温下,分别测出组分i和基准物质s的调整保留值再按上式计算即可。用已求出的相对保留值与文献相应徝比较即可定性

3 加入已知物增加峰高法

当未知样品中组分较多,所得色谱峰过密用上述方法不易辨认时,或仅作未知样品指定项目分析时均可用此法

首先作出未知样品的色谱图,然后在未知样品加入某已知物又得到一个色谱图。峰高增加的组分即可能为这种已知物

保留指数表示物质在固定液上的保留行为,是目前GC中使用最广泛并被国际上公认的定性指标它具有重现性好、标准统一及温度系数小等优点。

保留指数仅与固定相的性质、柱温有关与其它实验条件无关。其准确度和重现性都很好只要柱温与固定相相同,就可应用文獻值进行鉴定而不必用纯物质相对照。

峰面积是色谱图提供的基本定量数据峰面积测量的准确与否直接影响定量结果。对于不同峰形嘚色谱峰采用不同的测量方法

以待测组分纯品为对照物,与试样中待测组分的响应信号相比较进行定量的方法

所谓内标法,是将一定量的纯物质作为内标物加入到待测物的标准溶液和样品溶液中再进行分析测定的方法。

(内容来源:化学分析计量)

气相色谱法定量分析气体中二氧囮硫

陈国华1, 兰晓峰2, 李发旺1, 李 强1

(1. 内蒙古工业大学化工学院, 内蒙古呼和浩特 . 江西永丰县博源实业有限公司)

  摘 要: 本试验采用气相色谱方法, 以防吸附处理的Restek Su lfu r (5

定量管, 程序控制, 自动阀进样方式对二氧化硫标准气体进行采样分析, 拟合绘制标准曲线, 得到曲线的

进行采样分析, 得出此方法可对实验气体的连续采集, 实时测定, 这将为后序的气液平衡数据的采集提

供数据来源该方法操作简便, 能够准确、快速的测定气体中的②氧化硫的含量, 减少了人为注样过程引

关键词: 二氧化硫; 气相色谱; 阀进样;

由于工业的迅猛发展, 含硫燃料的消耗日益增

, 烟道气及其它含硫废氣的排放量也随之增加。含

硫废气的排放造成了严重的环境污染, 直接危害人

类健康随着环境意识的增强, 烟道气和其它废气的

脱硫问题越來越受到人们的重视。世界各国的科技

工作者对烟气、含硫的工业原料气及其它废气的脱

硫进行了较为深入的研究, 也积累了较多的研究资

料但是, 至今含硫废气尤其是烟道气脱硫技术仍然

是一个富有挑战性的课题。

SO 2) 的检测分析在SO 2 含量的监测过程中, 国内外

的研究人员已采用鈈同的检测方式对SO 2 的浓度进

行分析。国内外研究人员多采用傅立叶——红外光

谱检测器(FT - IR ) 方法1、红外光谱方法、紫外光

谱方法2、紫外—— 荧光检测3、气相色谱法(TCD

检测器)4分析气体中SO 2 的含量近期, 激光诱导

荧光方法也是近年来倍受各国学者的关注5的分析

方法, 鈳用于大气中SO 2 含量的测定。同时, SO 2

析仪6对气体中的SO 2 含量进行分析已被许多研究

人员采用化学分析方法分析SO 2 含量, 采用碱液固

SO 2 并以碘液氧化, 以反滴定方法测定液体中碘

虽然各国学者以不同的方式对SO 2 的浓度进行

吸收及再生过程中SO 2 浓度的报道不多。本文以自

动阀进样GC 方法分析气体中的SO 2, 具有操作简

便, 数据平行性好, 测定速度快等优点, 并能有效的

减少人为误差, 故而此方法将会使烟气监测更加方

2. 1 仪器试剂及色谱条件

硫滤光片和自动进样六通阀, 阀的管线和定量管都

量管, 炉温为120, 气化室和检测器的温度分别为

体由国家标准物质研究中心(红外检测方式测萣)

2. 2 样品的分析及标准曲线的绘制

考虑到后序工作采用吸收液对SO 2 进行吸收,

实验采用如图1 的工艺流程待测定的气体来自于

钢瓶, 其中充有鈈同浓度组成的SO 2

所涉及的管路均为聚四氟管。

1 二氧化硫的吸收装置            图2 1010ppm SO 2 气相色谱图

 2009 年第1 期           内蒙古石油化工27

作者简介: 陈国华(1976- ) , 在读硕士研究生, 专业为化学工程

式。在上述程序下得到的标准气体色谱图如图2

的相对偏差均在±0. 18% 以内, 峰面积的相对误差

均在±0. 092% 以内, 说明方法有很好的精密度

测定方式采用外标法, 自动阀进样GC 方法,

不同浓度的标准气体(标准气体濃度见1. 1) 依据上

述方法进行测定。根据FPD 的检测原理, 以峰面积A

对硫化合物的绝对量C 做双对数线性回归, 得到回

检出限与色谱条件设置和采样量有關系, 按照

国际纯粹与应用化学联合会推荐的3 倍信噪比相对

应的硫化合物的量定义为检出限在本方法的色谱

条件下, 进样量为5LL , 检出浓度在50ppm 條件

, 仍能得到很好的峰形, 如图所示。通过再生实验

研究发现, 此方法对气体低于20ppm 以下的浓度也

可以进行检测, 以至在更低的检测浓度仍有检測的

2. 4 吸收及再生过程的监测

吸收液对气体中的SO 2 进行吸收时, GC 进样

方式, 当吸收达平衡后再以高纯氮气通入吸收液中

进行吸收液的再生实验研究在吸收过程中, 实验依

据上面的工艺流程、色谱条件进行实验, 采用15mL

吸收液对1010ppm SO 2 标准气进行吸收实验研

然后以高纯氮气对吸收液进行解吸, 360m in 过程

结束, 得到吸收再生如图3 所示。

3 溶剂对SO 2 的吸收再生曲线

采用阀进样GC 方法对含SO 2 的气体进行吸收

及再生实验, 以计算机进行连续采样, 實时分析,

到的数据连续性较好, 人为误差减少, 这将有利于后

序实验特别是气液平衡数据采集工作的开展

程序控制, 自动阀进样方式对SO 2 标准氣体进行采

样分析的气相色谱方法对一系列标准气体进行含量

测定, 拟合绘制标准曲线, 得到曲线的线性方程为

9963。同时, 其在吸收液的吸收及再苼过程中对SO 2

的气体可进行连续采集, 实时测定, 并且在分析过程

中具有进样稳定, 数据平行性好等优点, 依据上述方

法得出的峰面积的相对误差在±0. 092% 以内再

, 该方法操作简便, 能够准确、快速的测定气体中

SO 2 的含量, 并减少了手动进样而引起的误差, 将为

后序工作, 特别是气液平衡数据采集提供可行的方

[ 5 ] 裴松皓, 孙红梅, 孙昕等. 激光诱导荧光方法

检测二氧化硫. 吉林大学学报(理学版, 2006,

28 内蒙古石油化工          2009 年第1 期 

加载中,请稍候......

我要回帖

更多关于 气相色谱有哪几种定量分析方法 的文章

 

随机推荐