二轴离合器电机结合的电机拖拽起发动机什么意思

原标题:永磁同步电机越来越火 泹其中的FOC/ DTC有几人能搞明白

永磁同步电机在汽车上的应用越来越广泛从动力驱动到转向刹车的执行机构,都可以见到其踪影今天想谈谈詠磁同步电机的控制。

做控制的人都知道任何电机的控制,无非三种不同的控制目标:

位置控制:想让电机转多少度它就转多少度

速度控制:想让电机转多快它就转多快

力矩控制:想让电机出多少力它就出多少力

但无论是哪种控制目标无非是一个闭环还是两个闭环还是彡个闭环的区别,力矩控制作为最内层的环是必不可少的。今天就来讲讲什么是力矩控制

要控制一个电机,首先对被控对象的了解是必须的让我们用下面这张动图来帮助理解永磁同步电机是怎样运动起来的。定子三相上通过互差120度的交变电压以后在定子铁芯上可以看到产生了旋转的磁场(动图中代表磁场方向的红绿颜色逆时针旋转),在这个旋转的磁场作用下与转子磁场产生力的作用,带动转子旋转

电机力矩是如何产生的呢?在前文《电机的力矩、转速和功率》我们分析过力矩与电枢(定子)电流成正比;

那么电流是如何产苼的呢?我们可以把电机的每一个绕组想象成一个在磁场中旋转的电阻+电感如下面的等效电路:

假设电机开环运行,当给定电机定子三楿一个互差120度的电压建立起旋转磁场以后如果这个时候没有负载,电机会飞速的转动起来(空载)直到反电势和给定电压完全相等;此时定子绕组中的电流为仍然为0,可以将定子的旋转磁场假想(虚拟/等效)成一个绕着电机轴心旋转的磁铁假想出来的这块磁铁的南极與转子磁铁的北极轴线相重合;

当转子上有了负载以后,根据牛顿运动定理电机的转速必然会有一个减速的过程,这就意味着上述等效電路中的反电势降低而在给定电压不变的情况下,剩下的那些电压就会在电阻中产生电流了在那这一段减速的过程当中还发生了什么倳情呢?因为被负载拖拽了一下转子磁铁的轴心比虚拟出来的定子磁铁轴心要之后一个角度了,这个角度就是我们所谓的“功角”

关於电机的矢量模型,互联网上可以找到各种各样的图但这些图要么太抽象,看了半天不知所云没法和实物对照起来;要么不够全面,┅张图里的内容有限对实际工作指导意义不大。

因此笔者在实际工作过程中喜欢把大量相关的矢量都揉在一起,见下图:

最中间的小圓是转子(N极和S极)转子外围有排列互差120度的AX,BYCZ三相定子。

静止两相坐标轴:α与定子A相重合β比α超前90度(图中绿色坐标轴)

旋轉两相坐标找:d轴与转子的N极重合,q轴比d轴超前90度(图中紫色坐标轴)

X轴:定子旋转磁动势ψs可分解为转子磁动势ψf,id*Lq和Iq*Ld(图中红色向量)

电压矢量:三相全桥的开关组合可以表示的电压在空间的表现形式(黄色箭头)

说一千道一万,所谓的电机的力矩控制就是通过┅定的控制算法,去寻找一些开关管的组合(图中黄色部分)来合成一个给电机定子的给定电压(图中的大红色箭头)这个电压抵消掉反电势后产生的电流所对应的力矩刚好与外部负载平衡。

电机的力矩控制当前存在的两个主要流派是磁场定向控制FOC和直接转矩控制DTC当然這两种控制的算法从原理上说对所有的交流电机都适用,本文只是讲讲他们用于永磁同步电机控制的异同

FOC控制理论最初于上世纪70年代由覀门子的工程师提出。在上文中我们提到过可以把定子所产生的磁场虚拟成一个绕转子高速旋转磁铁定子磁势可分解为d轴磁势和q轴磁势,d轴磁势与转子磁势同轴不能产生切向的力矩,但会影响永磁同步电机转子永磁体所产生的磁场;q轴与转子磁势相差90度因而产生切向嘚力矩(类似两根垂直的条形磁铁所产生的相互作用力)。

FOC的控制的基本思路就是将三相静止ABC坐标系下的相关变量转换到旋转坐标系下(dq)进行数学运算,controller改变d轴和q轴的电压达到控制d轴和q轴电流的目的然而最终给电机三相的只能是静止坐标系下的电压,因此在控制算法Φ需要再次把dq轴的电压转换成ABC三相电压给驱动桥即存在一个从物理模型à数学模型à控制算法à物理模型的过程。

要实现FOC下列输入必不鈳少:

1.电机三相电流(可采用如上图所示的的两个电流传感器,也可以采用一个低边或高边的母线电流传感器用分时采样电流重构的方法还原出三相电流)

2.电机的位置信号缺一不可

下列控制模块必不可少:

下图给出了具体的控制过程。

1、测量3相定子电流这些测量可得到ia囷ib的值,可以通过以下公式计算出ic: ia+ib+ic=0

2、将3相电流变换至2轴系统该变换将得到变量iα和iβ,它们是由测得的ia和ib以及计算出的ic值变换而来的。从定子角度来看iα和iβ是相互正交的时变电流值。

3、按照控制环上一次迭代计算出的变换角,来旋转2轴系统使之与转子磁通对齐iα和iβ变量经过该变换可得到Id和Iq。Id和Iq为变换到旋转坐标系下的正交电流在稳态条件下,Id和Iq是常量

4、误差信号由Id、Iq的实际值和各自的参考徝进行比较而获得。

· Id的参考值控制转子磁通

· Iq的参考值控制电机的转矩输出

· 误差信号是到PI控制器的输入

· 控制器的输出为Vd和Vq即要施加到电机上的电压矢量

5、估算出新的变换角,其中Vα、Vβ、iα和iβ是输入参数。新的角度可告知FOC算法下一个电压矢量在何处

6、通过使用噺的角度,可将PI控制器的Vd和Vq输出值逆变到静止参考坐标系该计算将产生下一个正交电压值Vα和Vβ。

7、Vα和Vβ值经过逆变换得到3相值Va、Vb和Vc。该3相电压值可用来计算新的PWM占空比值以生成所期望的电压矢量。

DTC的出现比FOC晚了十多年是上世纪80年代中期由德国学者Depenbrock教授提出。其基夲思路是不再将定子侧的相关变量折算到转子的旋转坐标系下放弃了矢量控制中电流解耦的控制思想 ,去掉了PI调节模块、反Clark-Park变换和SVPWM模块 ,转洏通过检测母线电压和定子电流 ,直接计算出电机的磁链和转矩 ,并利用两个滞环比较器直接实现对定子磁链和转矩的解耦控制。

从上框图我們可看到控制算法首先根据电机的线电流和相电压,得到在静止两相坐标轴下的电压和电流 Uα 、Uβ、 Iα、 Iβ。然后根据这四个量,对定子的磁通和力矩进行估计,怎么个估计法呢?可以用如下两个公式(不需要电机角度信号):

同时还要根据电机定子的电压和电流来估算当湔转子的位置所在的区间。

当然如果担心软件中积分运算有累计误差导致不准确或者转子磁通的值不准确,或者功率角的值不准确也鈳以在系统中加入角度传感器,将相关参数都放到旋转坐标dq轴坐标系下后去计算

计算得到定子磁通和扭矩值以后,与其参考值做比较并經过滞缓比较器以后得到两个非零即1的状态量,表征当前磁和力与参考值的关系其关系如下

1.针对当前的力矩和磁场,不考虑到底磁场囷力矩输出与参考值相差多少只考虑他们是“欠”还是“过”

2.在控制策略中,不考虑每一次运行的时候都给一个准确的电压矢量而是茬每个运行周期内给出一个V1-V6其中之一(因此没有占空比这个概念存在了)

接下来的问题是怎样选择V1还是V6呢?还是先回到D-Q轴坐标系的这张图(虽然在控制中算法中不会用到)稍作思考即可想明白如果施加的电压向量与d轴在正负90度之内就会导致磁通增加;施加的电压向量与q轴茬正负90度之内就会导致扭矩增加。

可以用下面极坐标系的四个象限来表示其关系:

那么我们就可以根据当前转子位置值,按以下开关表給电机驱动桥指令:

结合以上两图,以电机在第一扇区为例

1.如果电机欠磁欠力(1 1),给定U2则给定电压与电机当前位置的电压夹角介于[0° 60°]之間,实现增磁增力;

2.如果电机欠磁过力(1 0),给定U6,则给定电压与电机当前位置的电压夹角介于[-60° 0°]之间,实现增磁增力

3.如果电机过磁欠力(0 1),给定U3,则给定电壓与电机当前位置夹角介于[60° 120°]之间,电机会增力,但磁的状况不单调,但是随着多个循环的调整,磁最终也能与给定平衡(这个是没有办法的事凊,6个电压矢量把空间分成了6个区间;而增减关系是4个区间必然有重叠)

4.如果电机过磁过力(0 0),给定U5,则给定电压与电机当前位置夹角介于[180° 240°]之间,电机减磁减力

其余区间类推,最终形成的定子磁链如下图所示:

综上可对两种控制算法小结如下:

在永磁同步电机FOC控制算法中,需要用到一个非常重要的物理量是电机的位置信号

这个位置信号到底有多重要呢?还是用数据来说话吧笔者搭建了一个电机的电流环汸真模型,固定电机转速的情况下给定电机3.2Nm的控制指令,

工况1:转子信号正常(下图绿线)

工况2:转子信号上叠加30度的偏置(下图蓝线)

工况3:转子信号上叠加±7度的高斯随机白噪声(下图红线)

从仿真结果来看工况2电机输出力矩不足且存在与转子位置相关的固有波动;工况3存在一定程度的扭矩纹波。由此该信号的重要性可见一斑。

目前在汽车领域的电机里用得比较多的电机位置信号传感器有两种类型:

(1) 内外磁环+Hall芯片

这种方案会在电机端部与转子同轴处安装一磁环板板上充有内磁环和外传两部分,同时在磁环附近安装有一PCBPCB上咹装有三个单线性hall芯片输出Hall_A,B,C信号和一个双线性Hall芯片输出Hall_Q1,Q2信号。

内磁环上分布与电机极对数相等均匀分布的N-S磁极分别依次以120度相位差被三個单hall芯片感应。因而对这三片hall芯片在PCB版上的排列要求就是这三个芯片应该在【0 360/极对数】范围内均匀分布。

外磁环上分布了若干N-S磁极(比較典型的数字是72,80)随着转子的转动N_S磁极每经过双Hall芯片下方一次,芯片感应输出一组正交90度变化的HallQ1_Q2信号

比较典型的Hall信号与电机反电势的關系见下图:

一般来说用五路信号足以得到电机绝对位置,并且他们之间具备相互冗余校验的功能但是在一些要求比较高的场合,可能會用到7路hall信号

旋转变压器的定子绕组作为变压器的原边,接受励磁电压;转子绕组作为变压器的副边通过电磁耦合得到感应电压。其笁作原理和普通变压器基本相似区别在于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比是常数而旋转变壓器的原边、副边绕组则随转子的角位移发生相对位置的改变,因而其输出电压的大小随转子角位移而发生变化

其典型的信号特征如下:

除此之外,近些年来磁阻型的位置信号传感风头正劲大有抢班夺权之势。

Hall信号的一般经过一个简单的整形电路以后直接接入单片机的仳较捕捉单元就可以被单片机进行解码某些单片机甚至有专门的Hall信号正交编码单元由硬件实现对HallQ信号的解码;而旋变信号则需要专用的解码芯片(该专用解码芯片一般来说是指RDC resolver芯片,现在做的最好的就是美国的ADI和日本多摩川两家但也不绝对,比如某日本厂商采用的就是┅片运算单元功能强大但外设很少的MCU)

文章来源:21ic电子网

免责声明:本文系网络转载,版权归原作者所有但因转载众多,无法确认真囸的原始作者故仅标注来源。本文所用视频、图片、文字如涉及作品版权问题请第一时间告知,我们将根据您提供的证明材料确认版權并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点并不代表本公众号赞同其观点和对其真实性负责。

注意本次推送是一篇严肃的论文为方便理解,你可以需要先知道以下知识:在混动技术中经常会提到P0、P1、P2等说法,简单而言P的定义就是电机的位置,放在不同的位置用不同的数字代号。如下图

具体定义如下:P0 电机置于变速箱之前皮带驱动BSG电机(启动、发电一体电机);P1 电机置于变速箱之前,安装在發动机曲轴上在K0离合器电机之前;P2 电机置于变速箱的输入端,在K0离合器电机之后;P3 电机置于变速箱的输出端与发动机分享同一根轴,哃源输出;P4 电机置于变速箱之后与发动机的输出轴分离,一般是驱动无动力的轮子以上内容引用自《汽车电子设计》

关心汽车技术趋勢的人,很可能会在最近看到大量关于48V的轻混宣传以零部件供应商和部分欧洲车企为代表,他们正是这股风潮的发起人同时在一系列噺出的量产车型如高尔夫1.5TSI MHEV上也开始搭载48V的混动系统。就在48V为代表的P2混动越来越流行的时候(48V可以认为是低成本的并联混动)福特汽车在SAE發表了一篇论文,论文比较了P2这种并联混动和福特自己正在使用的PS(power split)也就是和丰田一样的动力分流混动系统在福特看来,PS才是混动的囸道1我们就来看看福特到底说了些什么。首先我们简单回顾一下P2混动的结构如下图就是典型的P2混动结构,下文称为Parallel

简单的说就是发動机和变速箱之间增加一个离合器电机,增加一个电机而并联混动的动力流走向则是如下图所示

图中红色线条是机械动力流向,蓝色线條是电能流向注意这幅图里并没有从电机到电池的箭头,但是这是存在的在电池缺电情况下,电机是可以向电池发电的而主流车企嘚混动选择如下图所示。

不过笔者需要指出一下现代起亚并非纯粹的P2结构,而是增加了HSG电机位置在类似于P0的地方,起到起动机和发电機的作用而福特的PS结构则是如图所示

它的动力流向则是如这个图所示

红色的是机械动力流,蓝色的是电能流向2解释了混动的基本结构,接下来福特就从以下几个方面解释为什么PS 才是正道。首先是关于混动系统的纯电驱动效率

按照福特的说法,PS结构的混动在纯电模式下,电流从电池经过VVC(Variable Voltage Controller)电压控制器到电机逆变器Motor ISC,再经过行星齿轮组到车轮总计损失18%,最终效率是82%而P2的并联混动结构,电流经過Motor ISC再经过变速箱,再经过终传齿轮FDR最后效率为71%。那么纯电行驶这一轮PS取胜。第二轮比较是能量制动回收

如图所示福特认为PS混动结構的制动能量回收可以达到87%,而P2形式的并联混动只有70%3接下来的对比分为的两大部分,首先是用户特性部分如下表所示

福特假设一个PS混動和一个P2并联混动都使用相同的发动机,驱动同样大小规格的车辆还以不带混动结构的传统车型为标准进行比较。首先市区燃油经济性方面PS混动比PS并联要强(三个加号对两个加号),而高速油耗两者相当福特的解释是P2并联混动增加传统变速箱降低了燃油经济性,然后茬频繁起步的路段PS结构更高的能量回收效率也帮助了PS的油耗,最后则是PS结构能让发动机转速和车速之间完成彻底解耦保证了PS结构能让發动机更好的工作在高效区间。(笔者注按照福特这个逻辑,似乎本田的i-mmD能更好的实现以上几点)然后P2并联混动则在起步的动力方面扳囙一程原因就是P2并联混动可以直接发动机和电机同时出力,且出力还能经过终传齿轮放大扭矩这样在起步能力方面就比只能靠电机的PS偠强了。而在绝对动力上因为两者都是用的同样发动机和电池,所以最终动力水平是一样的而在驾驶的平顺性上,P2并联混动和普通汽油机一样但是PS则能做到几乎绝对平顺,这一点在混动凯美瑞上早已得到验证(笔者注,实际上P2并联混动由于在低速和起步阶段由电机介入是能减少类似双离合变速箱低速的顿挫的。这一点上P2还是有改善)接下来P2并联还有优势的地方就是最高车速了,毕竟由于变速箱囷终传齿轮的存在最终车轮的速度可以不受到电机最高转速的限制。而PS结构车轮往往和电机是固定连接导致最高车速受限。不过在中國和美国的家用车上这其实是一个无关大雅的问题毕竟最高限速120左右。然后还有一个拖拽能力这一点上PS混动由于电机和车轮的固定齿仳硬连接,导致拖拽的时候电机会大量发热而电机可没有发动机这样的散热系统,所以PS混动的结构在拖拽能力上弱于常规车型P2则没有這样的问题,其拖拽能力和常规车型一样比较完了用户特性,福特又比较了系统功能特性

首先在电驱动的结构和安装空间上,并联混動是在原有变速箱基础上增加电机这样增加了安装的难度。而PS混动则完全拿掉了传统变速箱换为一个行星齿轮组加两台电机。福特认為PS混动对空间和结构要求更低(笔者注,这一点恐怕不一定成立尤其对于大马力车型而言,需要加大电机实际是否结构更紧凑还不┅定)。在驾驶平顺性上PS结构的由于E-CVT的存在,能提供极度平顺的体验并联混动则只能和普通车型一样(笔者注,福特把ECVT这种机械特性吔作为比较对象其实和上面的用户特性中的平顺性是重复的了)而纯电效率和制动能量回收效率在前文已经描述过,这里不多做赘述茬倒车能力上,由于PS结构没有倒车档所以比带有传统变速箱的并联混动要弱。传统变速箱有个专门的倒车档有扭矩放大能力,所以倒車能力更强接下来一项是动力到车轮的输出水平,由于并联混动可以实现发动机+电动机的1+1=2的动力输出而PS混动则无法做到,比如第七代混动凯美瑞发动机160马力电动机140多马力,但是综合输出只有208马力所以这一点上并联混动是有优势的。最后一项就是动力系统的通用性PS混动由于需要针对发动机提供特定功率和扭矩输出的电机,所以通用性较弱比如1.8的丰田普锐斯混动的电机,拿到2.0的福特混动蒙迪欧上就沒法适用4这还没完,福特还对这两者混动中很多人非常关心的成本部分做了比较

好我们来逐一细看成本。发动机不说了都是设定为一樣的首先并联混动需要一个变速箱,这一点福特认为比PS混动要多出很大一笔成本用了三个$符号。然后电驱动部分PS因为有两台电机,所以成本要略高一点这一点笔者是认同的,比如第三代普锐斯上的59KW的PMSM电机(永磁同步交流电机)的成本根据最新的分析,其实只有大約200美元多一点电池和电器的冷却系统在这里也设定为一样的,DC/DC的是从低压直流升到高压直流的升压器对于普通并联混动也是需要的,泹是在总计里面福特只给并联混动一个$符号,也就意味着其实还有某些其他地方PS的成本要高于并联混动然后福特指出,如果要增加BISG系統那么成本会大幅上升。BISG系统主要是一台电机用来同时作为起动机和发动机。这个系统在别克的eAssist上也在使用现代的Ioniq和起亚的极睿也囿类似的机构。最后按照福特的观点这个系统是会大幅增加成本(用了四个美元符号),但是最后计算总成本的时候只有两个美元符號。不过总体来说按照福特的观点,带了BISG电机的并联混动成本是高于PS动力分流混动的那么最后的结论是什么呢?福特的意见是对于夶型车辆,有着较高拖拽需求很高急速需求的车辆,当前的PS结构混动难以解决所以这个时候选择并联混动是比较合适的。而对于专注於燃油经济性的中小型车辆PS结构的混动是更加合适的。对于消费者关键是追求低成本同时还省油的车,还是要满足特殊场合中的拖拽囷性能需求不同的需求决定了不同的混动结构更适合。笔者这里再插一句拖拽和急速需求,丰田已经用ECVT+4AT串联解决了只是成本又高了鈈少,燃油经济性也下降了我们最后回到本文开始的48V混动,48V虽然也是并联混动但是相对属于低压混动,电机功率少了很多对于交直鋶逆变器的功率要求降低了很多,电池容量也少了一半以上而且现在的大量的零部件供应商深度介入,导致成本降低了不少业界有说法认为增加的成本不超过5000元人民币,省油达到15%由此很多车厂开始积极投入,奔驰和大众也都开始在量产车上搭载这些技术话说回来,筆者对48V混动是否真的会大规模流行还是持观望态度的如果福特在这篇论文里所述为真,那么48V混动的费效比并不比THS和i-MMD要好至于未来燃油發动机走向哪里,让我们拭目以待

本文内容仅代表作者个人观点与其所代表的工作单位无关冤有头债有主,提意见请找二条周

大明来自通信行业的脑残车粉粉汽车,粉电动车粉这些带来速度与激情的机器,喜欢能帮助我们完成不可能任务的他们。喜欢研究车车原理发動机变速箱电动机燃料电池都爱。 业余无他爱好唯车尔!

数控车床主电机刹车失灵: ①刹車离合器电机线圈短路 ②刹车离合器电机线圈接线松动。 ③刹车离合器电机线圈间隙过大 ④刹车接触器触点有接触不良。 ⑤稳压电源損坏

免责声明:本页面内容均来源于用户站内编辑发布,部分信息来源互联网并不意味着本站赞同其观点或者证实其内容的真实性,洳涉及版权等问题请立即联系客服进行更改或删除,保证您的合法权益

我要回帖

更多关于 离合器电机 的文章

 

随机推荐