the forest0.12汉化3怎么取消和平模式

《太阳能发电》第6版 - 外文翻译|论文翻译|专业翻译公司|盖特翻译公司
当前位置:首 页 && &翻译赏析
《太阳能发电》第6版
EXECUTIVE SUMMARYOctober 20102SOLAR GENERATION 6EXECUTIVE SUMMARYoctober 2010WINDBIOMASSGEOTHERMALOCEAN & WAVEHYDROCOALOILGASURANIUMFIGURE 1SOLAR IRRADIATIONVERSUS ESTABLISHEDGLOBAL ENERGYRESOURCESFOSSIL FUELS ARE EXPRESSED WITH REGARDTO THEIR TOTAL RESERVES WHILE RENEWABLE ENERGIESTO THEIR YEARLY POTENTIAL.ANNUAL SOLARIRRADIATIONTO THE EARTHGLOBAL ANNUALENERGY CONSUMPTION3INTRODUCTION11. INTRODUCTIONThe growing appetite for energy in the entire world,the implications of climate change, the increasingdamages to our environment and the scarcity offossil fuels have created the appropriate conditionsfor renewable energies development. For decadeswe have known that just a small percentage of thesun’s energy reaching the earth’s surface on a dailybasis could power the entire mankind several timesover. The time has come for solar photovoltaic (PV)electricity to be a part of the global solution to fightclimate change and to help us shift to a carbonfreeeconomy. It is also, in addition, a prosperousindustry sector in its own right.Unlimited power from the SunThe solar irradiation received by the earth everyyear is by far larger than the sum of the completefossil and fissile reserves.There are virtually no constraints of materialavailability, no industry limitation, no environmentalconstraints to the deployment of solar PVelectricity. Solar PV electricity has an excellentenv in average, the energynecessary to produce a PV panel is approximatelyfrom two years to 6 months -depending of thelocation- of the electricity it will produce during itslifetime, which is of at least 20 or 25 years.It can integrate seamlessly in highly dense urbanenvironments, as well as desert areas. The quickramp-up capabilities ensure the ability to follow theneed for new energy demands.The course for the solar age is being set todayRecognizing the significant benefits of PV technology,more than 50 national or regional governments worldwidehave been adopting support mechanisms toaccelerate the deployment of PV.Over 1,000 companies are producing “crystallinesilicon” technology products and more than 160companies Thin Film technology ones. Othercompanies are working in the areas of concentratorPV while new technologies like organic PV are onthe brink of their commercial development.Once PV was a curiosity used for spaceexploration. Since then, a real market has seen theday.In 2009 in Europe, PV has reached the 3rdplace following wind and gas in terms of annualnew installed capacity and is expected to go evenhigher in 2010. With more than 30 GW of PVinstalled at the end of 2010, solar electricity isgoing mainstream.Prices are dropping fastWith PV prices dropping consistently by 22% eachtime the cumulated global production doubles, PVprices have dropped by 40% over the last two yearsand are expected to decrease up to 60% in 2020.The average efficiencies of solar modules havealso improved a couple of percentage points peryear. It ranges currently at 15-19 % and with atarget of 18-23% in 2010, the efficiencies in 2020will drive prices even further down andconcentrator PV systems will reach efficienciesabove 30% in the coming years.The timehas comefor solarelectricity tobe a part ofthe globalsolution tofight climatechange.25,00020,00015,00010,0005,0000CHINAUSAREST OF WORLDJAPANEUFIGURE 2EVOLUTION OF TOTALINSTALLED CAPACITY FORPV IN THE LAST DECADEMWsource: Global Market Outlook for Photovoltaics until 2014, EPIA, May 2010.42. REFERENCEFOR THE FUTUREThis publication is the sixth edition of the referenceglobal solar scenarios that have been establishedby the European Photovoltaic Industry Association(EPIA) and Greenpeace jointly for almost ten years.They provide well documented scenariosestablishing the PV deployment potential worldwideby 2050.2. REFERENCEFOR THE FUTUREThe first edition of Solar Generation was publishedin 2001. Since then, each year, the actual globalPV market has grown faster that the industry andGreenpeace had predicted (see table 1).The solar PV market has outpaced“Solar Generation” predictions by nine years.YearMarket Result MWSG I 2001SG II 2004SG III 2006SG IV 2007SG V 2008SG VI 201020013343312002439408200359451820041,05265920051,32083898520061,4671,0601,2831,88320072,3921,3401,6752,5402,17920086,0901,7002,1903,4203,1294,17520097,2032,1502,8774,6304,3395,16020102,8103,6345,5505,6506,95013,625TABLE 1ANNUAL PV INSTALLED CAPACITYMWREFERENCEFOR THE FUTURE2ConcentratorPhotovoltaics installedon trackers to followthe sun.(C) Concentrix53. SOLAR GENERATION 6METHODOLOGYThe scenarios provide projections for installedcapacity and energy output for the 40 comingyears. In addition it evaluates the level ofinvestment required, the number of jobs it wouldcreate and the crucial effect that an increasedinput from solar electricity will have on the loweringof global greenhouse gas emissions.Taking into account the successful developmentof PV markets during last few years, the previouslydefined scenarios as “advanced” and “moderated”have been renamed respectfully as “paradigmshift” and “accelerated” ones.The Paradigm Shift Scenario (previously“advanced”) estimates the full potential of PV. Theassumption is that current support levels arestrengthened, deepened and accompanied by avariety of instruments and administrative measuresthat will push the deployment of PV forward.The Accelerated Scenario (previously“moderate”) is a continuation of current supportpolicies and requires a lower level of politicalcommitment than the “Paradigm Shift”. Its targetsfor 2030 could be achieved in 20 years without anymajor technology changes in the electricity grids.The Reference Scenario is based on thereference scenario found in the International EnergyAgency’s 2009 World Energy Outlook (WEO 2009)analysis, extrapolated to 2030. According to this,China and India are expected to grow faster thanother regions, followed by the Other DevelopingAsia group of countries, Africa and the TransitionEconomies (mainly the former Soviet Union).SOLARGENERATION 6METHODOLOGY3PV Pergola,Forum Barcelona.(C) IsofotonWorkers installing thin filmmodules on a flat roof.(C) First Solar6AssumptionsIn order to assess the PV penetration in the threescenarios, the limitations that occur by thecombination of different technologies are taken intoaccount. This assumption also assumes littleprogress in storage systems in the short term.Regional splitTwo estimatesfor electricityconsumptionCarbon dioxidesavingsEmploymentCapacity factorLearning factorCost ofPV systemsAll three scenarios present a view of the future using global figures and calculate regional valuesfor PV growth. The regions defined are the European Union (27 member states), non EUEuropean states, OECD Pacific (including South Korea), OECD North America, Latin America,East Asia, Developing Asia (excluding South Korea), India, China, the Middle East, Africa andthe Transition Economies (mainly the former Soviet Union).The global “IEA electricity demandReference Scenario” simply takesthe projections by the International EnergyAgency (WEO 2009) into account.These show an increase in the globalpower demand.17,928 TWh/a in 201022,840 TWh/a in 202028,954 TWh/a in 203039,360 TWh/a In 205017,338 TWh/a in 201019,440 TWh/a in 202020,164 TWh/a in 203031,795 TWh/a in 2050The global electricity demand from theGreenpeace/European Renewable EnergyCouncil “Energy [R]evolution scenario”report (June 2010) takes extensive energyefficiency measures into account.Over the whole of the scenario period, it is assumed that PV installations will save on average0.6 kg equivalent of CO2 per kWh, taking emissions from the PV lifecycle of between 12 and25 g equivalent of CO2 per kWh into account.30 full-time equivalent (FTE) jobs are created for each MW of solar power modules producedand installed.A figure for employment needs to take into account the whole PV value-chain including theresearch centres plus silicon, wafers, cells, modules and other components production andthe complete installation. The figure does not include the jobs displaced from the conventionalenergy sector.A reasonable decrease is foreseen to reach around 20 FTE per installed MW in 2050.The maintenance jobs are expressed separately in the scenarios.It expresses how much of the input ‘Sun’ energy is converted into electrical energy for PV.The estimated growth is between 12% and 17% by 2050 in both scenarios.This estimate takesall technologies and not only the most advanced ones into account. It assumes a reasonablepenetration of more efficient technologies considering how fast technologies are actuallyevolving as well as the arrival of concentrated photovoltaic (CPV) in sunny regions.In last 30 years, PV costs have dropped by more than 22% with each doubling of installedcapacity. In all scenarios a pessimistic reduction is considered: 18% from 2020, 16% from2030 and 14% from 2040 to 2050.PV markets do not have the same level of maturity in all countries. The current prices in Germany,the most developed market, show that a sustainable market development can bring a steadydecrease of prices. This outlook considers 2.5 EUR/Wp (Paradigm Shift) and takes the averageof 2.8 EUR/Wp in 2010 for PV systems (Accelerated Scenario) which is already a reality.74. SOLAR GENERATION 6HIGHLIGHTSA future mainstream power sourceBy 2050, PV could generate enough solar electricityto satisfy 21% of the world electricity needs.This represents a total of 2,260 TWh of solar PVelectricity in 2030 and up to 6,750 TWh in 2050. Thiswould come from an installed capacity of 1,845 GWin 2030 and 4,670 GW in 2050, to be comparedwith 23 GW installed in the world at the end of 2009.20105,000,0004,500,0004,000,0003,500,0003,000,0002,500,0002,000,0001,500,0001,000,000500,000040 2050REFERENCE SCENARIOACCELERATED SCENARIOPARADIGM SHIFT SCENARIOFIGURE 4TOTAL OF WORLD PVINSTALLED CAPACITYUNDER THREE SCENARIOSGWSOLARGENERATION 6HIGHLIGHTS4Reference Solar market growth - IEA ProjectionSolar power penetration of World’s electricity in %- Reference (IEA Demand Projection)Solar power penetration of World’s electricity in %- Energy [R]evolution (Energy Efficiency)Accelerated Solar Market growthSolar power penetration of World’s electricity in %- Reference (IEA Demand Projection)Solar power penetration of World’s electricity in %- Energy [R]evolution (Energy Efficiency)Paradigm Shift Solar Market GrowthSolar power penetration of World’s electricity in %- Reference (IEA Demand Projection)Solar power penetration of World’s electricity in %- Energy [R]evolution (Energy Efficiency)%%%%%%20100.20.20.20.20.20.220200.40.41.92.04.04.220300.70.84.95.77.89.120401.11.38.210.112.615.520501.41.811.314.017.121.2TABLE 2AMOUNT OF SOLAR PV ELECTRICITY AS A PERCENTAGE OF WORLD POWER CONSUMPTIONsource: Greenpeace/EPIA Solar Generation VI, 201030 24211815129630PARADIGM SHIFT SCENARIO - ENERGY [R]EVOLUTION(ENERGY EFFICIENCY)PARADIGM SHIFT SCENARIO - REFERENCE(IEA DEMAND PROJECTION)ACCELERATED SCENARIO - ENERGY [R]EVOLUTION(ENERGY EFFICIENCY)ACCELERATED SCENARIO - REFERENCE(IEA DEMAND PROJECTION)REFERENCE SCENARIO - ENERGY [R]EVOLUTION(ENERGY EFFICIENCY)REFERENCE SCENARIO - REFERENCE(IEA DEMAND PROJECTION)FIGURE 3AMOUNT OF SOLAR PV ELECTRICITYAS A PERCENTAGE OF WORLDPOWER CONSUMPTION%source: Greenpeace/EPIA Solar Generation VI, 20108An affordable and competitivesource of energyThe EPIA/Greenpeace Paradigm Shift Scenarioshows that by the year 2030, PV could generateup to 2260 TWh of electricity around the world andup to 6750 TWh in 2050. This means that enoughsolar electricity would be produced to cover 21%of the world electricity needs by 2050.PV installed capacity could reach 1845 GW in2030 and 4670 GW in 2050 in that scenario.With this price decrease, the cost of generatingelectricity from PV is going down fast. Therefore itcan quickly enter competition with conventionalelectricity sources.Levelised Cost of Electricity (LCOE)The generation costs of solar PV are expected todecrease significantly by 2020 and beyond. Thefigure 5 shows the generation costs of PV electricityin 2020 and 2030. The Levelised Cost of Electricityis a way to compare various power generationsources such as a conventional coal power plantand a PV system. LCOE allocates the costs of anenergy plant across its useful life, to give an effectiveprice per each unit of energy (kWh).The LCOE depends on the market evolution (lowand high cases) and the location of the PV system:the higher the irradiation (measured in hours of Sunirradiation), the lower the LCOE.20102,500 2,8001,439 1,843914 1,297782 1,067702 935650 857609 800583 763563 7343,0002,5002,0001,5001,000500020152020202520302035204020452050ACCELERATED SCENARIOPARADIGM SHIFT SCENARIOFIGURE 5PRICE OF LARGE PVSYSTEMS EVOLUTIONEUR/KWp-56%-63% -77%-74%FIGURE 6PV LEVELISED COSTOF ELECTRICITY RANGESEUR/KWhsource: EPIA8501,0501,2501,4501,6501,8502,0500.300.250.200.150.100.0500.290.270.130.120.070.050.050.040.170.120.110.08HIGHOPERATING HOURS kWh/kWpEUR/kWhLOWHIGH 2010LOWHIGHLOWHIGH 2020LOWHIGHLOWHIGH 2030LOW20102020203095. WORLD PVDEPLOYMENTThe solar market has initially grown in developed however it is expected to shift todeveloping countries in the coming decades. After2020, North America, China and India will drive thePV market. After 2030, Africa, the Middle East andLatin America will also provide very significantcontributions. Grid connected systems willcontinue to dominate the market in developedcountries. In developing countries PV will beintegrated into the electricity network in towns andcities, while off-grid and mini-grid installations areexpected to play an increasing role in Asian andAfrican countries to power remote villages.Solar electricity is an efficient way to get power topeople in developing countries, especially in regionswith lots of Sun. While a standard household of 2.5people in developed countries uses around 3,500kWh annually, a 100 WP system (generating around200 kWh in a country from the “Sunbelt”) indeveloping countries can cover basic electricityneeds for 3 people per household. In Europe, thegeneration of 500 TWh of electricity would meandelivering electricity to 357 million of Europeans athome. In the non-industrialised world, each 100GW of PV installed for rural electrification cangenerate electricity for 1 billion people.FIGURE 7REGIONAL DEVELOPMENTLINKED TO PV EXPANSIONUNDER THREE SCENARIOSGW2030PARADIGM SHIFT SCENARIO20202030ACCELERATED SCENARIO20202030REFERENCE SCENARIO202012% PAC 25% EUR18% PAC10% AFR5% AFR2% ME1% ME16% CHI11% CHI1% IND2% DE2% LA2% IND7% DE39% EUR21% NA0% TE24% TE0% NA2% LA26% EUR6% PAC6% AFR9% PAC3% ME5% AFR1% ME8% CHI14% CHI6% IND6% DE3% LA7% IND6% DE4% LA40% EUR22% NA2% TE0% TE26% NA34% EUR4% PAC5% AFR3% ME5% PAC3% AFR2% ME5% CHI13% CHI5% IND4% DE2% LA6% IND4% DE4% LA53% EUR0% TE2% TE21% NA25% NAEUR: EUROPETE: TRANSITION ECONOMIESNA: NORTH AMERICALA: LATIN AMERICADA: DEVELOPING ASIAIND: INDIACHI: CHINAME: MIDDLE EASTAFR: AFRICAPAC: PACIFICWORLD PVDEPLOYMENT5source: Greenpeace/EPIA Solar Generation VI, 2010Large PV systemat Munich airport.(C) BP Solar10ReferenceScenario20202030AcceleratedScenario20202030ParadigmShift Scenario20202030OECDEurope3038140280366631TransitionEconomies00120342OECDNorthAmerica163777285145460LatinAmerica139471566DevelopingAsia21119702483India14207133113China8252915038242MiddleEast143301147Africa41516622185OECDPacific131931643377Total771563451,0816881,845TABLE 3PV INSTALLED CAPACITY EVOLUTION BY REGION UNTIL 2030GWBuilding integratedphotovoltaics: athin film panel in afa?ade-integration.(C) Goldbeck solarGmbH/SulfurcellPV manufacturingprocess. (C) Oerlikonsource: Greenpeace/EPIA Solar Generation VI, 201011PV could generate up to 3.7 million jobs in theworld by 2020 and more than 5 million by 2050.The PV market in 2010 will reach a turn-over ofmore than 34 billion EUR (48 billion USD) in the the total of yearly investments could reach160 billion EUR (225 billion USD) until 2040.6. SOLAR PVELECTRICITY BENEFITSTO THE WHOLE SOCIETYSolar energy generates economicgrowth and employmentReference ScenarioAnnual Installation MWCost EUR/kWInvestment EUR billion/yearEmployment Job/yearAccelerated ScenarioAnnual Installation MWCost EUR/kWInvestment EUR billion/yearEmployment Job/yearParadigm Shift ScenarioAnnual Installation MWCost EUR/kWInvestment EUR billion/yearEmployment Job/year20084,9403,00015156,9654,9403,00015156,9654,9403,00015156,96520097,2622,90021228,1497,2622,90021228,1497,2622,90021228,14920107,5502,80014237,09312,0912,80034374,31913,6252,50034417,01020154,1172,35112136,32927,0911,85550810,22847,0001,499701,372,18520205,9202,08013187,46459,0311,340791,690,603135,3769511293,781,553203018,7401,70327508,94496,171966932,629,968136,8337441003,546,820204019,9281,48730476,114162,3168261344,027,349250,0006451615,563,681205020,1291,38228692,655174,7967581334,315,343250,0005961495,346,320TABLE 4INVESTMENT AND EMPLOYMENT POTENTIAL OF SOLAR PVSOLAR PVELECTRICITYBENEFITS TO THEWHOLE SOCIETY6source: Greenpeace/EPIA Solar Generation VI, 2010Fighting climate changeThe damage we are doing to the climate by usingfossil fuels (oil, coal and gas) for energy andtransport is likely to destroy the livelihoods ofmillions of people, especially in the developingworld. It will also disrupt ecosystems andsignificantly speed up the extinction of speciesover the coming decades.International climate negotiations have entered adifficult stage following the Copenhagen ClimateConference (COP 15) which failed to deliver the legallybinding international treaty. The treaty would be crucialin providing investment security and a clear directionfor the green transformation of the world economy.The Copenhagen Accord, a non-binding letter ofpolitical intentions, contains a number of provisionson mid-term targets for developed countries as wellas mitigation actions by developing countries.Furthermore, it contains provisions for financial andtechnological support for developing countriescarrying out actions to combat climate change.However, the international community is still in searchof an internationally accepted formula on how theseprovisions are to be carried out.We are working against the clock since the KyotoProtocol's first commitment period is about toexpire in 2012. The “star” of the UNFCCC commitsthe developed countries that have ratified it (its 165signatory countries) to reduce their greenhouseemissions by 5.2% compared to those levels of1990. Expectations and hopes to pave the way foran international binding agreement on climatechange now rest on Cancun (COP 16) and COP17. The aim is to achieve a balanced package ofmeasures and decisions based on a long-termshared vision, adaptation, mitigation, technologytransfer and financing.12EPIA and Greenpeace believe that it is possible toreach a binding deal before the expiration of theend of the first commitment period of the KyotoProtocol. Such an agreement will need to ensurethat industrialised countries reduce their emissionson average by at least 40% by 2020, compared totheir 1990 levels. They will need to provide afurther 140 billion USD a year in order to enabledeveloping countries to adapt to climate change,protect their forests and achieve their part of theenergy revolution. On the other hand, developingcountries need to reduce their greenhouse gasemissions by 15%-30% with regards to theirprojected growth by 2020 and raise their mitigationambitions through the Nationally AppropriateMitigation Actions (NAMAs). NAMAs is a vehicle forthe emission reduction actions in developingcountries as foreseen in the Bali Action Plan.Thereby a joint commitment from developed anddeveloping economies is needed to limit thegrowth of greenhouse gas emissions. This is to bedone by complying with legally binding emissionsreduction obligations and adopting the necessarymeasures to reduce the use of highly pollutingtechnologies whilst replacing fossil fueldependency with renewable energy sources.Solar PV electricity reduces CO2 emissionsIt is undeniable that PV can be an efficient tool toreplacing conventional power generation and tofight climate change.Generating 1 kWh of electricity from fossil fuels emitson average about 600 grams of CO2-equivalent(including other greenhouse gases). On average, itcan be considered that each kWh produced by PVspares 600 grams of CO2-equivalent, even takingthe energy used to produce PV panels into account.Under the Paradigm Shift Scenario for PV growthup to 542 million of tonnes of CO2 emission couldbe avoided each year from 2020 and up to 4 billiontonnes of CO2-equivalent yearly by 2050 byshifting just 20% of power generation to PV. Thecumulative total between 2010 and 2050 wouldrepresent up to 65 billion tonnes of CO2 that willnot be sent into the earth’s atmosphere.If there is sufficient political will, we believe that it isfeasible to reach an ambitious set of decisions inCancun at the end of 2010. Even if political will iscurrently lacking, major elements could still be in place,especially those related to long term financingcommitments, forest protection and an overall targetfor emission reductions. However, we must do all wecan to keep the process moving forward, to be able tocelebrate at the Environment and Development Summitin Brazil in 2012 an agreement that will keep the world’stemperature well below 2 degrees warming.20084,0003,5003,0002,5002,0001,5001,00050002009201020152020202520302035204020452050REFERENCE SCENARIOACCELERATED SCENARIOPARADIGM SHIFT SCENARIOFIGURE 8ANNUAL CO2 REDUCTIONMILLION TONNES CO2Sources figures 8/9: Greenpeace/EPIA Solar Generation VI, 20102008200920102015202020252030203520402045205060,00050,00040,00030,00020,00010,0000FIGURE 9CUMULATIVE CO2REDUCTIONMILLION TONNES CO2137. RECOMMENDATIONSThe Feed-in Tariff:the main driver of solar successFeed-in Tariffs (FiTs) are widely recognised as themost effective way to develop new markets for PV.World-wide, people are surprised that Germany,not a particularly sunny place, has developed sucha dynamic solar electricity market and a flourishingPV industry.The concept is that solar electricity producers:o have the right to feed solar electricity into thepublic grido receive a reasonable premium tariff pergenerated kWh reflecting the benefits of solarelectricity to compensate for the current extracosts of PV electricityo receive the premium tariff over a fixed periodof time.Although simple, these three aspects can takesignificant efforts to be established. For manyyears power utilities did not allow solar electricityto ‘feed into” their grid and this is still the case inmany countries today.Additional mechanisms to supportFeed-in Tariffso A fast, simple, linear, transparent andstraightforward administrative process isrequired. It must be cost effective andproportional to the project size.o In addition the connection of PV systems to thegrid must be simple, transparent andnon-discriminatory. Free market access andlimited number of intermediaries must beensured while mechanisms against speculationwill allow a fair competition with conventionalgeneration technologies.RECOMMENDATIONS7Key attributes to a successful feed-in scheme:A temporary measure – they are onlyrequired in the pre-competitive phase andare transitional.Paid for by utilities, with costs distributedto all consumers – this protects the tarifffrom frequently changing governmentbudgets and limits consumer cost increases.Regular decrease of the tariff, dependingof the market development, for newlyinstalled systems – to put constant pressureon the PV industry to reduce costs each year.Used to encourage high-quality systems –tariffs reward people for generating solarelectricity, not just for installing it, this wayowners keep the output high over thesystem’s life.Structured to encourage easier financing –as it guarantees revenue over a fixed period.14Access to energy in developing countries:the FTSM proposalInvestment and generation, especially indeveloping countries, will be higher than forexisting coal or gas-fired power stations in the nextfive to ten years. The Feed-in Tariff SupportMechanism (FTSM) is a concept conceived byGreenpeace to bridge this gap, with the financialsupport from developed countries.The aim of the FTSM is to help introduce feed-inlaws in developing countries for their bankable,long-term and stable support for a local renewableenergy market. For countries with a lot of potentialrenewable capacity, it would be possible to createa new ‘no-lose’ mechanism that generatesemission reduction credits for sale to developedcountries under the Kyoto Protocol. The proceedswould then be used to offset part of the additionalcost of the Feed-in Tariff system. Other countrieswould need a more directly-funded approach topay for the additional costs to consumers that atariff would bring. The feed-in scheme would workexactly as in only thefinancing of the scheme would differ.For this, Greenpeace proposes a fund, createdfrom the sale of ‘carbon credits’ and taxes. Thekey parameters for the FTSM fund would bethe following:o The fund guarantees payment of the Feed-inTariffs over a period of 20 years, provided theproject is operated properly.o The fund receives annual income fromemissions trading or from direct funding.o The fund pays Feed-in Tariffs annually only onthe basis of generated electricity.o Every FTSM project must have a professionalmaintenance company to ensure high availability.o The grid operator must do its own monitoring andsend generation data to the FTSM fund. Datafrom the project managers and grid operators willbe compared regularly to check consistency.Micro credits schemes for small hydro projects inBangladesh and wind farms in Denmark andGermany are good examples to see how small,community-based projects can be successfulthanks to a large public support.Solar helps provide access to energyAccording to the IEA’s report on the world’saccess to energy1, in 2008 approximately 1.5billion people, or 22% of the world’s population,85% of them is rural areas, did not have access toelectricity. Energy alone is not sufficient to alleviatepoverty. However, it is an important step in anydevelopment process. Access to electricity, forsignificant amounts of people brings the reachingof a number of Millennium Development Goals(MDG) set by the United Nations, into perspective.There are three approaches in bringing electricityto remote areas:o Extending the national grid. This is often adifficult choice due to its high cost.o Providing off-grid technologies. Many PVsolutions exist (Pico PV system, classical solarhome or residential systems), which are alreadycost competitive and are well-suited forhousehold uses.o Developing mini-grids with hybrid power.By combining renewable or non renewablegenerationtechnologies, separate from the gridand backed-up with a local storage or generatorPV plays a tremendous role in rural electrification.1 www.worldenergyoutlook.org/database_electricity/electricity_access_database.htmSolar helps provideaccess to energy.(C) BP Solar15500,000400,000300,000200,000100,0000OECD North AmericaTOTAL CAPACITYMW70,00060,00050,00040,00030,00020,00010,0000Latin AmericaTOTAL CAPACITYMW400 MW 1,773 MW442 MW484 MW2,319 MW2,456 MW90,00080,00070,00060,00050,00040,00030,00020,00010,0000AfricaTOTAL CAPACITYMW100 MW163 MW163 MW700,000600,000500,000400,000300,000200,000100,0000OECD EuropeTOTAL CAPACITYMW50,00040,00030,00020,00010,0000Middle EastTOTAL CAPACITYMW16,046 MW150 MW176 MW213 MW50,00040,00030,00020,00010,0000Transition EconomiesTOTAL CAPACITYMW5 MW6 MW7 MW120,000100,00080,00060,00040,00020,0000IndiaTOTAL CAPACITYMW250,000200,000150,000100,00050,0000ChinaTOTAL CAPACITYMW134 MW 373 MW606 MW624 MW179 MW200 MW80,00060,00040,00020,0000OECD PacificTOTAL CAPACITYMW3,273 MW5,247 MW5,609 MW100,00080,00060,00040,00020,0000Developing AsiaTOTAL CAPACITYMW750 MW775 MW800 MW2,000,0001,600,0001,200,000800,000400,0000GlobalTOTAL CAPACITYMW23,004 MW34,986 MW36,629 MWACCELERATEDPARADIGM SHIFTWORLD MAP Global cumulative capacity showing the Accelerated and Paradigm Shift scenarios by regionMWEuropean Photovoltaic Industry AssociationRenewable Energy HouseRue d’Arlon 63-671040 BrusselsBelgiumT: +32 2 4653884F: +32 2 4001010www.epia.orgcom@epia.orgGreenpeace InternationalOttho Heldringstraat 51066 AZ AmsterdamThe NetherlandsT: 31 20 7182000F: 31 20 5148151www.greenpeace.orgsven.teske@greenpeace.orgSOLAR GENERATION 6FULL REPORT2010Out soonThe full Solar Generation report will be published by the end of 2010.It will be available here for download:www.epia.org/solargenerationText edited by: EPIA: Monika Antal, Giorgia Concas, Eleni Despotou, Adel El Gammal, Daniel Fraile Montoro, Marie Latour, Paula Llamas, Sophie Lenoir Ga?tan Masson,Pieterjan Vanbuggenhout. Greenpeace: Sven Teske. External contributions: Simon Rolland (Alliance for Rural Electrification), Rebecca Short. Design by: Onehemisphere,Sweden. Photo credits: BP Solar, Concentrix, Isofotón, Sulfurcell, First Solar, Goldbeck Solar GmbH, Oerlikon.EPIAWith over 220 Members drawn from across the entiresolar photovoltaic sector, the European PhotovoltaicIndustry Association is the world’s largest photovoltaicindustry association. EPIA Members are presentthroughout the whole value-chain: from silicon, cells andmodule production to systems development and PVelectricity generation as well as marketing and sales.EPIA’s mission is to deliver a distinct and valuable servicedriven from the strength of a single photovoltaic voice.GreenpeaceGreenpeace is a global organisation that uses non-violentdirect action to tackle the most crucial threats to our planet’sbiodiversity and environment. Greenpeace is a non-profitorganisation, present in 40 countries across Europe, theAmericas, Asia and the Pacific. It speaks for 2.8 millionsupporters worldwide and inspires many millions more totake action every day. To maintain its independence,Greenpeace does not accept donations from governmentsor corporations but relies on contributions from individualsupporters and foundation grants.Greenpeace has been campaigning againstenvironmental degradation since 1971 when a small boatof volunteers and journalists sailed into Amchitka, an areanorth of Alaska, where the US Government wasconducting underground nuclear tests. This tradition of‘bearing witness’ in a non-violent manner continues todayand ships are an important part of all its campaign work.
日&&&&&& 第 19期& 副刊 &&&&&&
工业和信息化部 电子信息司
国家发展和改革委员会 高技术产业司
指导单位:
《太阳能发电》第6版
出版单位:欧洲光伏工业协会
翻译单位:中国光伏产业联盟
一、简介.............................................. 1
(一)来自太阳的取之不尽的能量......................... 1
(二)我们已经进入了太阳能时代......................... 1
(三)价格迅速下降.................................... 2
二、预测.............................................. 3
三、《太阳能发电》第6版采用的预测方法................. 4
(一)假设............................................ 4
四、《太阳能发电》第6版重点........................... 7
(一)未来主流能源.................................... 7
(二)价格适中具有竞争力的能源......................... 9
(三)发电成本标准化(LCOE).......................... 10
五、世界光伏应用..................................... 13
六、太阳能发电使整个社会受益.......................... 14
(一)发展光伏能源推动经济增长并增加了就业............. 14
(二)与气候变化做斗争................................ 15
(三)太阳能发电降低二氧化碳的排放量.................. 17
七、 建议............................................ 19
(一)固定电价收购制度:光伏发电产业成功的巨大推动力量& 19
(二)支持固定电价收购制度的其他机制措施.............. 20
(三)发展中国家能量获取途径:固定电价收购制度提案(FIT) 21
(四)太阳能提供了新的能源............................ 22
全球对能量的需求不断增加,气候变化,环境恶化和化石能源的濒临匮乏都为可再生能源的发展创造了条件。几十年来,我们都知道每天太阳照射到地球表面的一小部分能量就能够让全世界的人类受益无限。光伏发电能帮助我们解决气候变暖的问题,并帮助我们向无碳经济转变。同时,它本身也是一个前景广阔的产业。
(一)来自太阳的取之不尽的能量
每年地球表面所接收的太阳辐射能量比地球所有化石燃料储存量的总和还要多。
使用太阳能发电,在原材料获取方面没有任何限制,也没有行业的限制,更没有环境限制。太阳能发电对环境非常友好。在一般情况下,根据地区的不同,制造一个太阳能电池片所必须的电量大约为6个月到2年不等这块太阳能电池片所产生的电量,而这块太阳能电池片的使用寿命至少为20或25年。
(二)我们已经进入了太阳能时代
认识到光伏科技对社会和经济发展带来的益处,世界范围内50个国家和地区的政府采取鼓励政策措施来加速光伏产业的应用。
超过1000家公司采用晶体硅技术,160多家公司采用薄膜技术。其它公司专注于光伏系统集成,而新的科技如有机光伏发电业正处于商业化的边缘。
曾几何时,光伏是一个应用于空间探测的神秘技术。但从那时起,光伏市场正在悄然兴起。2009年在欧洲,光伏已经成为继风能和天然气之后的第三大新兴能源,并且预计2010年有上升趋势。在2010年末,光伏系统安装量已高于30GW,太阳能发电正成为主流。
(三)价格迅速下降
图1 年里光伏系统累计安装量
中国美国其他日本欧洲
数据来源:2014年全球光伏市场展望,EPIA,2010.5
每当全球光伏产品总产量增长2倍时,光伏产品价格则下降22%。在过去的两年里,光伏产品的价格下降了40%,预计在2020年会下降60%。
太阳能电池组件的平均发电效率每年都会提高几个百分点。目前它的效率在15-19%,2020年会提高到18-23%。2020年,光伏系统效率会升至30%,效率的提高会使光伏产品价格降得更低。
这份关于未来全球光伏产业发展情况的报告是由欧洲光伏产业联盟与国际绿色和平组织联合出版,本期为第六版。它记录了2050年之前世界范围内的光伏市场发展情况。
第一个版的《太阳能发电》于2001年出版。自从那时起,每年光伏市场的实际增长速度要比绿色和平组织预测的快很多。(见表1)
表1 光伏年装机容量
2001年第一版
2004年第二版
2006年第三版
2007年第四版
2008年第五版
2010年第六版
三、《太阳能发电》第6版采用的预测方法
本报告对未来40年的装机容量和发电量进行了预测。除此之外还对所需的总投资,能够创造的工作岗位数量进行了评估。太阳能发电的引入会相应地降低全球温室气体排放量,本报告对这一重要作用也进行了评估。
考虑到光伏市场在过去的几年里发展一帆风顺,在情景分析中把过去所定义的“高级增长情景”,“温和增长情景”分别重新命名为最激进的“模式转换情景”和“加速增长情景”。
模式转换情景 考虑到了促进光伏市场发展的全部潜在因素。假设在一系列支持光伏市场发展的政策措施和行政手段的连同作用下,现有的支撑光伏市场发展的动力加强了,深化了。
加速增长情景 是目前支持政策的延续,与模式转换情景相比,所需的政策支持力度相对较低。即使在今后的20年里,电网不出现重大的技术变革,2030年的目标仍会实现。
参考增长情景 是基于2009年国际能源署的《世界能源展望》的分析报告,推测至2030年。根据这个预测结果,中国和印度预期比其他地区增长更快,其次是亚洲其它发展中国家、非洲和过渡经济体(主要是前苏联)。
(一)假设
为了评估在3种不同情景下的光伏渗透结果,不同的技术结合所造成的局限性也考虑在内。同时假设储能系统技术短期内没有大的进步。
区域差别&& 三个情景都是用全球数据对未来情况进行展望,并且计算了不同区域的光伏增长情况。区域被划分为欧盟(27个成员国家),欧洲非欧盟国家,太平洋经合组织(包括韩国),北美经济合作与发展组织,拉丁美洲,东亚,亚洲发展中国家(韩国除外),印度,中国,中东,非洲和转型经济体(主要是前苏联)。
对电力消费量的两个预估 &“国际能源署电力需求参考情景(IEA DEMAND PROJECTION)”以国际能源署的预测为参考。这些数据表明了国际电力需求的增长。
2010年 17928 TWh/a
2020年 22840TWh/a
2030年 28954TWh/a
2050年 39360TWh/a
绿色和平组织/欧洲可再生能源委员会的“能源发展情况(ENERGY [R]EVOLUTION)”报告考虑得更广,并将节能方法考虑在内,得到了下列一组全球电力需求增长数据。
2010年 17338TWh/a
2020年 19400TWh/a
2030年 20164TWh/a
2050年 31795TWh/a
二氧化碳减排量 &假设光伏系统每产生1千瓦时的电量会减少0.6千克的二氧化碳排放量,这一减排量已将光伏系统在生命周期内使用过程中所排放的大约12克至25克二氧化碳考虑在内。
就业& 每安装1MW的太阳能电源模块就会创造30个全职工作岗位(FTE)。
就业数据的统计需要将整个光伏产业链考虑在内,包括研究中心,硅、晶圆、电池单元、电池模块和其它组件的制造以及系统安装。这个数据不包括从传统能源部门转移出来的工作。
每安装1MW的太阳能电源模块所创造的就业岗位数量预计于2050年会下降至20个左右。
维护类工作会在报告中进行单独的介绍。
光电转换效率&& 光电转换效率指的是太阳能电池能把多少比例的入射太阳能转化为电能。
假设到2050年,太阳能电池的光电转换效率达到12%至17%。这个预计考虑了所有的光伏电池技术。
学习因素 &&在过去的30年里,光伏系统安装容量每增加两倍,光伏发电成本就会减少22%。考虑到成本下降速度会减慢,在所有情景下,我们假定2020年这个减少率为18%,2030年为16%,年为14%。
光伏系统成本& 光伏市场在所有的国家发展水平并不一致。在目前世界上光伏市场发展最好的国家德国,持续的市场发展能带来光伏系统价格的持续下滑。假设在模式转换情景下,光伏系统成本为2.5欧元/Wp,在加速增长情景下,光伏系统成本为2.8欧元/Wp。
四、《太阳能发电》第6版重点
(一)未来主流能源
至2050年,光伏发电将会满足世界上21%的电力需求。
这就意味着2030年太阳能发电总量将达到2260TWh,2050年发电总量为6750TWh。2030年光伏装机容量会达到1845GW,2050年达到4670GW,而2009年世界实际装机容量为23GW。
图2 太阳能光伏发电量占世界电力消耗量的百分比
模式转换情景—ENERGY [R]EVOLUTION
模式转换情景—IEA DEMAND PROJECTION
加速增长情景—ENERGY [R]EVOLUTION
加速增长情景—IEA DEMAND PROJECTION
参考增长情景—ENERGY [R]EVOLUTION
参考增长情景—IEA DEMAND PROJECTION
数据来源:Greenpeace/EPIA 太阳能发电第六版
图3 在三种不同情况下的世界光伏装机总量
参考增长情景
加速增长情景
模式转换情景
数据来源:Greenpeace/EPIA 太阳能发电第六版
表2太阳能光伏发电量占世界电力消耗量的百分比
参考增长情景
世界电力消耗量-IEA DEMAND PROJECTION
世界电力消耗量-ENERGY [R]EVOLUTION
加速增长情景
世界电力消耗量-IEA DEMAND PROJECTION
世界电力消耗量-ENERGY [R]EVOLUTION
模式转换情景
世界电力消耗量-IEA DEMAND PROJECTION
世界电力消耗量-ENERGY [R]EVOLUTION
数据来源:Greenpeace/EPIA 太阳能发电第六版
(二)价格适中具有竞争力的能源
模式转换情景表明2030年,世界光伏发电量会增加至2260TWh,2050年增加至6750TWh。这就意味着至2050年会有足够的太阳能电力来满足世界21%的电力需求。
在模式转换情景,预测至2030年光伏系统装机容量会达到1845GW,到2050年达到4670GW。
随着价格的逐渐下降,光伏发电的成本也迅速下降。因此它能够更早地和传统的电力资源进行竞争。
图4 大型光伏系统价格变化
加速增长情景
模式转换情景
(三)发电成本标准化(LCOE)
光伏发电成本预计在2020年及以后会有显著的下降。图5显示了2020年和2030年的光伏发电成本。通过发电成本标准化,将各种发电方法例如传统火力发电和光伏发电系统进行对比。LCOE将发电厂的发电成本分摊在整个发电寿命中,给出了每度电(kWh)的发电成本。
LCOE依赖于市场不断的进展(低端市场和高端市场)和光伏发电系统的安装区域:光照越强(以每小时光辐射量计算),LCOE越低。
图5 太阳能发电标准化成本范围
发电时间(h)
图6 三种情景下区域光伏市场发展情况
加速增长情景
参考增长情景
PAC:太平洋区
TE:转型经济体
LA:拉丁美洲
DA:亚洲发展中国家
模式转换情景
五、世界光伏应用
太阳能市场最早在发达国家兴起并发展;然而,在未来的几十年内有向发展中国家转移的趋势。2020年之后,北美、中国和印度将会成为光伏市场的主要成长动力。2030年之后,非洲,中东和拉美也将拉动光伏市场的增长。在发达国家,并网光伏发电系统占据主导地位。在发展中国家,光伏发电将并入城市和乡镇电网,然而,离网和小型并网光伏发电系统将会在亚洲和非洲发挥越来越巨大的作用,来为偏远地区供应电力。
对于发展中国家来说,特别是光照充足的地方,太阳能发电是一种非常有效的获得电力的途径。在发达国家,一个标准的2.5人的家庭每年用电量为3500千瓦时。在发展中国家,一个100W的光伏发电系统(在阳光充足的国家能产生200千瓦时电量),就可以满足一个3口之家的用电需求。在欧洲,500TWh的电量就意味着能够满足3.57亿人的家庭用电需求。在非工业化的国家,100GW的光伏发电系统就能满足10亿人的用电需求。
表3& 到2030年的区域光伏装机容量(GW)
转型经济体
北美经合组织
亚洲发展中国家
太平洋经合组织
参考增长情景
加速增长情景
模式转换情景
六、太阳能发电使整个社会受益
(一)发展光伏能源推动经济增长并增加了就业
至2020年,光伏产业能够创造出370万个工作岗位,至2050年会超过500万。
在2010年光伏市场规模将会超过340亿欧元(480亿美元);至2040年,光伏市场年投资额将达到1600亿欧元(2250亿美元)。
表4 对太阳能发电的投资情况和就业能力预测
参考增长情景
系统安装量
成本(EUR/kW)
投资总额(10亿EUR)
解决就业人数
加速增长情景
系统安装量
成本(EUR/kW)
投资总额(10亿EUR)
解决就业人数
模式转换情景
系统安装量
成本(EUR/kW)
投资总额(10亿EUR)
解决就业人数
(二)与气候变化做斗争
我们使用化石燃料(石油,煤和天然气)来作为能源和交通动力来源,正在对环境造成极大的破坏,并有可能破坏数百亿人,特别是发展中国家的人们的生活。同时,在未来的几十年里,也会使生态系统遭到破坏,并且加速物种灭绝。
哥本哈根环境大会没有达成一致的具有法律效力的国际条款,因此国际气候谈判进入了一个艰难的时期。国际条款在提供投资安全保障方面有着至关重要的作用,同时,也为世界经济绿色化转变指明了方向。《哥本哈根公约》是一个不具法律效力的政治协议,规定了许多发达国家中期减排目标,以及发展中国家的减排行动计划。更重要的是,它规定了许多为发展中国家的气候控制提供金融和技术方面支持的条款。然而,这个国际团体仍然在寻找一个国际都可以接受的方案,使各项条款得以贯彻落实。
《京都议定书》的第一期承诺将于2012年到期,因此我们要抢先一步召开哥本哈根气候大会。在《气候变化框架公约》(UNFCCC)中,发达国家(包括165个签字国)承诺,他们各自的温室气体排放量要在1990年的基础上减少5.2%。我们寄希望于在坎昆的第16次气候大会和第17次气候大会上,能够制定出具有约束力的条款。
欧洲光伏产业联盟和绿色和平组织认为,在《京都议定书》失效之前,取得一个具有约束力的协议是可能的。这项协议要求,工业化国家至2020年,在1990年基础上减少40%的温室气体排放量。并且发每年为发展中国家提供1400亿美元的资金援助,以保证发展中国家适应环境变化,保护森林并且完成他们的部分能源改革目标。另一方面,发展中国家需要根据他们至2020年的经济增长情况,降低15%-30%的温室气体排放量,同时通过《国家减排行动》增强减排决心。《国家减排行动》是发展中国家减排行动的指导方针。发展中国家和发达国家都必须承诺限制温室气体排放量的增长。通过执行具有法律效力的减排规定,采取有效的措施来减少高污染技术的使用,同时用可再生能源代替传统化石燃料能源。
如果各个国家有着强烈的政治意愿,那么我们在2010年末在坎昆召开的环境大会上就能够达成一个宏伟的目标。即使各个国家的政治意愿不是很强烈,但是一些主要环节必须达成一致,特别是那些与长期投资承诺、森林保护和总体减排目标等相关的规定。然而,我们必须尽最大努力,来推动这一进程,这样就能够在2012年即将召开的巴西环境和发展峰会上,就全球气温升高控制在2℃以内达成一致。
(三)太阳能发电降低二氧化碳的排放量
在替代传统发电和应对气候变化问题上,太阳能发电无疑是一个非常有效的工具。
用化石燃料进行发电,每生产1千瓦时的电量就会排放出600克的二氧化碳(包括其他温室气体)。因此我们也可以这样理解,使用太阳能发电,每1千瓦时就能够减少600克的二氧化碳排放量,即使考虑到生产光伏电池所需的能量。
在模式转换情景下,从2020年开始,采用光伏发电每年可减少5.42亿吨CO2排放量。到2050年,若仅20%的电力采用光伏发电,将每年减少4亿吨CO2排放量。在年间,总共将减少65亿吨的CO2排放量。
图7 年均二氧化碳减排量&&
百万吨二氧化碳
参考增长情景
加速增长情景
模式转换情景
图8 累计二氧化碳减排量&&
百万吨二氧化碳
(一)固定电价收购制度:光伏发电产业成功的巨大推动力量
固定电价收购制度曾被广泛认为是发展光伏市场的最有效的方法。令人们感到惊讶的是,德国,一个光照不是很充足的国家,成为了一个生机勃勃的太阳能发电市场,光伏产业在那里蓬勃发展。
固定电价收购制度的概念是太阳能发电厂:
l&& 有权力将太阳能发电并入公共电网
l&& 每发一度电会得到合理的优惠关税,来补偿目前光伏发电高成本的现象。
l&& 在一段固定的时期内享受优惠关税
尽管这些措施很简单,但是如果这三个方面能够贯彻落实,会产生极其明显的效果。过去很长一段时间里,太阳能发电都不允许并入公共电网,这种情况在今天许多国家仍旧存在。
固定电价收购制度关键要素
暂时性措施—只需在竞争初期出台,具有过渡性。
成本分摊在消费者身上—这样就可以保证补贴的稳定性,免受政府财政预算波动的影响。
根据市场发展情况,或者每年新装机系统,定期减少收购电价—这样就会给光伏发电企业造成一定压力,迫使其每年减少成本。
鼓励高质量光伏系统—固定电价收购制度对太阳能发电是一种奖励,鼓励人们使用高质量的发电系统。
提高了投资热情—因为其在一个固定的时间段内保证了总收益。
(二)支持固定电价收购制度的其他机制措施
l&& 需要一个反应迅速的,简单的,流程化的,透明的行政手续。这个手续应该是有成本效益的,并且与工程的规模成比例。
l&& 除此之外,太阳能发电系统并入公共电网应该简单,透明化和无歧视。必须确保光伏发电能够自由进入市场,并且限制中介机构的数量,以确保与传统发电厂的公平竞争。
(三)发展中国家能量获取途径:固定电价收购制度提案(FIT)
在未来的5至10年里,发展中国家投资太阳能发电与使用煤和天然气发电相比,成本相对更高。固定电价收购制度是绿色和平组织提出的一个概念,旨在消除这一差距,并从发达国家那里得到经济援助。
固定电价收购制度的目标就是在发展中国家引进相应法律法规,来保护当地可再生能源市场的持续和长期发展。对于那些可再生能源潜力比较大的国家,可以建立一个“双赢”的机制,在《京都议定书》的框架下,将碳减排额度卖给发达国家。这个措施可以抵消一部分FIT成本。其他国家可能需要一个更加直接的资金资助方式,以支付FIT政策给消费者带来的额外负担。FIT的政策效果将与发达国家完全相同,只是资金来源稍有差别。
绿色和平组织提议用出售“碳信用额”和税款建立一个基金。固定电价收购制度基金的关键因素如下:
l&& 假如项目如预期正常运行,在20年的时间里,基金会持续支持以保证固定电价收购制度的运行。
l&& 基金每年从碳信用额度的买卖或者直接融资来获得收益。
l&& 基金会每年只基于已发电量来资助FIT制度。
l&& 每个固定电价收购项目都应该有一个专业的公司来保证联络畅通。
l&& 电网操作员必须自己监控并把发电数据发送到FTSM基金会。项目经理和操作员的数据需要定期进行对比以保证一致性。
孟加拉国一些小型水电站和丹麦的风力发电站都是一些非常好的例子,从中可以看出,得力于公共支持,小型的、以社区为基础的项目也能获得成功。
(四)太阳能提供了新的能源
根据国际能源署对世界能源的报告,2008年大约15亿人,也就是22%的世界人口(其中85%生活在农村)无法使用电力。虽说解决电力问题对完全脱贫来说还远远不够,然而,这是一个非常重要的发展步骤。
让偏远地区人口能用上电有以下3种方法:
l&& 扩展国家电网 这是一个难题,因为成本较高。
l&& 提供离网技术 存在很多光伏发电方案(Pico光伏发电系统,典型的家庭或者住宅式太阳能发电系统),这些方案已经具有较强的成本竞争力,并且非常适用于家庭使用。
l&& 用混合动力发展小型电网 通过将可再生和非可再生能源发电技术结合起来,从公共电网中分离,并使用存储系统或者发电机。光伏发电在乡村发电中发挥了巨大的作用。
中国光伏产业联盟成立于日,英文名称为 China Photovoltaic Industry Alliance (简称光伏联盟或CPIA),总部(即联盟秘书处所在地)设在中国北京。光伏联盟是在工业和信息化部、国家发展和改革委员会的指导下,由积极投身于光伏产业,从事光伏产品及应用的研究、开发、制造、服务的企/事业单位及有关机构自愿组成的、非营利性的社会组织。光伏联盟的发起单位由中国光伏产业的精英组成,涵盖从多晶硅、太阳能电池、应用系统到专用设备的整个光伏产业链,同时还包括产业研究机构和行业协会。
中国电子信息产业发展研究院 光伏产业研究所
中 国 光 伏 产 业 联 盟
通信地址:北京市海淀区万寿路27号院(100846)
电&&& 话:010-&& &&
电子信箱:
网&&& 址:www.
内部资料 仅供参考
+ 相关文章
版权与免责声明:
1.本网站发布的所有文章,包括文字与图片,如未注明文章来源则视为本公司原创作品,转载时请保留本网站链接!违反上述声明者,我公司将依法追究法律责任。
凡注明&来源:xxx(非本站)&的作品,均转载自其它媒体,本网转载的目的在于传播更多信息,此类稿件并不代表本网观点,本网不承担此类稿件侵权行为的直接责任及连带责任。
如因作品内容、版权等需要同本网联系的,请及时本网相关工作人员。
Copyright 2008 - 2010

我要回帖

更多关于 the forest0.11 的文章

 

随机推荐